Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chall ; 7(5): 2200162, 2023 May.
Article in English | MEDLINE | ID: mdl-37205928

ABSTRACT

In 2017, a review of microalgae protein-derived bioactive peptides relevant in cardiovascular disease (CVD) management was published. Given the rapid evolution of the field, an update is needed to illumininate recent developments and proffer future suggestions. In this review, the scientific literature (2018-2022) is mined for that purpose and the relevant properties of the identified peptides related to CVD are discussed. The challenges and prospects for microalgae peptides are similarly discussed. Since 2018, several publications have independently confirmed the potential to produce microalgae protein-derived nutraceutical peptides. Peptides that reduce hypertension (by inhibiting angiotensin converting enzyme and endothelial nitric oxide synthase), modulate dyslipidemia and have antioxidant and anti-inflammatory properties have been reported, and characterized. Taken together, future research and development investments in nutraceutical peptides from microalgae proteins need to focus on the challenges of large-scale biomass production, improvement in techniques for protein extraction, peptide release and processing, and the need for clinical trials to validate the claimed health benefits as well as formulation of various consumer products with the novel bioactive ingredients.

2.
Fish Physiol Biochem ; 49(1): 155-167, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36547499

ABSTRACT

The melanocortin-3-receptor (MC3R) plays an important role in mammals' food intake and energy homeostasis. However, its physiological role in bony fishes, such as grass carp, has not been well understood. This study reports the molecular cloning, tissue distribution, and pharmacological characterization of grass carp melanocortin-3-receptor (ciMC3R). Phylogenetic and chromosomal synteny analyses indicated that ciMC3R was closest to cyprinid fishes in evolution. Quantitative PCR experiments revealed that the mRNA of ciMC3R was highly expressed in the brain of grass carp. The cytological function of ciMC3R was investigated by the co-transfection of pcDNA3.1-ciMC3R and the signal-pathway-specific luciferase into the HEK293T cells. Results revealed that the four agonists, α-MSH, ß-MSH, ACTH, and NDP-MSH, potentiate the activation of ciMC3R and further increase the production of cAMP and upregulate the MAPK/ERK signaling, respectively. Our study will provide basic data for exploring the physiological functions of grass carp MC3R, especially in energy homeostasis and food intake.


Subject(s)
Carps , Fish Proteins , Receptor, Melanocortin, Type 3 , Animals , Humans , Carps/genetics , Cloning, Molecular , Fish Proteins/genetics , HEK293 Cells , Phylogeny , Receptor, Melanocortin, Type 3/genetics
3.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955603

ABSTRACT

The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs' adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/ß-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3ß), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.


Subject(s)
Biological Products , Bone Diseases , Animals , Biological Products/pharmacology , Biological Products/therapeutic use , Bone Diseases/drug therapy , Bone Diseases/prevention & control , Humans , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , RANK Ligand/pharmacology , Signal Transduction
4.
Food Chem (Oxf) ; 4: 100078, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35415696

ABSTRACT

Hypertension impacts negatively on the quality of life of sufferers, and complications associated with uncontrolled hypertension are life-threatening. Hence, many research efforts are exploring the antihypertensive properties of bioactive peptides derived from food proteins using in vitro ACE-inhibitory assay, experimentally-induced and spontaneous hypertensive rats, normotensive and hypertensive human models. In this study, the cellular and molecular mechanisms of blood pressure-lowering properties of novel peptides reported in recent studies (2015-July 30, 2021) were discussed. In addition to common mechanisms such as the inhibition of angiotensin I-converting enzyme (ACE) and renin activities, recently recognized mechanisms through which bioactive peptides exert their antihypertensive properties including the induction of vasodilation via upregulation of cyclo-oxygenase (COX) and prostaglandin receptor and endothelial nitric oxide synthase expression and L-type Ca2+ channel blockade were presented. Similarly, emerging mechanisms of blood pressure-lowering by bioactive peptides such as modulation of inflammation (TNF-α, and other cytokines signaling), oxidative stress (Keap-1/Nrf2/ARE/HO-1 and related signaling pathways), PPAR-γ/caspase3/MAPK signaling pathways and inhibition of lipid accumulation were discussed. The review also highlighted factors that influence the antihypertensive properties of peptides such as method of hydrolysis (type and number of enzymes, and chemical used for hydrolysis, and microbial fermentation), and amino acid sequence and chain length of peptides.

SELECTION OF CITATIONS
SEARCH DETAIL
...