Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-34874917

ABSTRACT

The protein tau and its isoforms are associated with several neurodegenerative diseases, many of which are characterized by greater deposition of the 4-repeat (4R) tau isoform; however, the role of 4R tau in disease pathogenesis remains unclear. We created antisense oligonucleotides (ASOs) that alter the ratio of 3R to 4R tau to investigate the role of specific tau isoforms in disease. Preferential expression of 4R tau in human tau-expressing (hTau-expressing) mice was previously shown to increase seizure severity and phosphorylated tau deposition without neuronal or synaptic loss. In this study, we observed strong colocalization of 4R tau within reactive astrocytes and increased expression of pan-reactive and neurotoxic genes following 3R to 4R tau splicing ASO treatment in hTau mice. Increasing 4R tau levels in primary astrocytes provoked a similar response, including a neurotoxic genetic profile and diminished homeostatic function, which was replicated in human induced pluripotent stem cell-derived (iPSC-derived) astrocytes harboring a mutation that exhibits greater 4R tau. Healthy neurons cultured with 4R tau-expressing human iPSC-derived astrocytes exhibited a higher firing frequency and hypersynchrony, which could be prevented by lowering tau expression. These findings support a potentially novel pathway by which astrocytic 4R tau mediates reactivity and dysfunction and suggest that astrocyte-targeted therapeutics against 4R tau may mitigate neurodegenerative disease progression.


Subject(s)
Astrocytes , tau Proteins , Animals , Astrocytes/cytology , Astrocytes/metabolism , Astrocytes/pathology , Cells, Cultured , Female , Humans , Induced Pluripotent Stem Cells/cytology , Male , Mice , Mice, Transgenic , Neurodegenerative Diseases , tau Proteins/genetics , tau Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: mdl-34187891

ABSTRACT

Heterozygous genetic variants within the TREM2 gene show a strong association with increased Alzheimer's disease (AD) risk. Amyloid beta-depositing mouse models haploinsufficient or null for Trem2 have identified important relationships among TREM2, microglia, and AD pathology; however, results are challenging to interpret in the context of varying microglial phenotypes and disease progression. We hypothesized that acute Trem2 reduction may alter amyloid pathology and microglial responses independent of genetic Trem2 deletion in mouse models. We developed antisense oligonucleotides (ASOs) that potently but transiently lower Trem2 messenger RNA throughout the brain and administered them to APP/PS1 mice at varying stages of plaque pathology. Late-stage ASO-mediated Trem2 knockdown significantly reduced plaque deposition and attenuated microglial association around plaque deposits when evaluated 1 mo after ASO injection. Changes in microglial gene signatures 1 wk after ASO administration and phagocytosis measured in ASO-treated cells together indicate that microglia may be activated with short-term Trem2 reduction. These results suggest a time- and/or dose-dependent role for TREM2 in mediating plaque deposition and microglial responses in which loss of TREM2 function may be beneficial for microglial activation and plaque removal in an acute context.


Subject(s)
Amyloid/metabolism , Membrane Glycoproteins/metabolism , Microglia/pathology , Phagocytosis , Receptors, Immunologic/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Biomarkers/metabolism , Brain/metabolism , Mice, Transgenic , Microglia/drug effects , Oligonucleotides, Antisense/pharmacology , Phagocytosis/drug effects , Phosphorylation/drug effects , Plaque, Amyloid/pathology , Presenilin-1/metabolism , Up-Regulation/drug effects , tau Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 116(11): 5102-5107, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30792350

ABSTRACT

Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα-/- mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα-/- mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα-/- microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB-related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα-/- mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα-deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα-/- mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.


Subject(s)
Circadian Clocks , Inflammation/metabolism , Inflammation/pathology , Neurons/metabolism , Neurons/pathology , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cell Death , Gene Deletion , Gliosis/pathology , Hippocampus/pathology , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , NF-kappa B/metabolism , Nerve Net/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency , Signal Transduction
4.
PLoS One ; 11(2): e0148717, 2016.
Article in English | MEDLINE | ID: mdl-26919393

ABSTRACT

Late onset Alzheimer's disease (LOAD) is a genetically complex and clinically heterogeneous disease. Recent large-scale genome wide association studies (GWAS) have identified more than twenty loci that modify risk for AD. Despite the identification of these loci, little progress has been made in identifying the functional variants that explain the association with AD risk. Thus, we sought to determine whether the novel LOAD GWAS single nucleotide polymorphisms (SNPs) alter expression of LOAD GWAS genes and whether expression of these genes is altered in AD brains. The majority of LOAD GWAS SNPs occur in gene dense regions under large linkage disequilibrium (LD) blocks, making it unclear which gene(s) are modified by the SNP. Thus, we tested for brain expression quantitative trait loci (eQTLs) between LOAD GWAS SNPs and SNPs in high LD with the LOAD GWAS SNPs in all of the genes within the GWAS loci. We found a significant eQTL between rs1476679 and PILRB and GATS, which occurs within the ZCWPW1 locus. PILRB and GATS expression levels, within the ZCWPW1 locus, were also associated with AD status. Rs7120548 was associated with MTCH2 expression, which occurs within the CELF1 locus. Additionally, expression of several genes within the CELF1 locus, including MTCH2, were highly correlated with one another and were associated with AD status. We further demonstrate that PILRB, as well as other genes within the GWAS loci, are most highly expressed in microglia. These findings together with the function of PILRB as a DAP12 receptor supports the critical role of microglia and neuroinflammation in AD risk.


Subject(s)
Alzheimer Disease/genetics , CELF1 Protein/genetics , Membrane Glycoproteins/genetics , Polymorphism, Single Nucleotide , Receptors, Immunologic/genetics , Age of Onset , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Brain/metabolism , Case-Control Studies , Databases, Genetic , Female , Gene Expression Regulation , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Middle Aged , Mitochondrial Membrane Transport Proteins/genetics , Quantitative Trait Loci , Risk Factors , Zinc Fingers/genetics
5.
J Biol Chem ; 285(49): 38415-27, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-20889977

ABSTRACT

Opioid receptor signaling via EGF receptor (EGFR) transactivation and ERK/MAPK phosphorylation initiates diverse cellular responses that are cell type-dependent. In astrocytes, multiple µ opioid receptor-mediated mechanisms of ERK activation exist that are temporally distinctive and feature different outcomes. Upon discovering that chronic opiate treatment of rats down-regulates thrombospondin 1 (TSP1) expression in the nucleus accumbens and cortex, we investigated the mechanism of action of this modulation in astrocytes. TSP1 is synthesized in astrocytes and is released into the extracellular matrix where it is known to play a role in synapse formation and neurite outgrowth. Acute morphine (hours) reduced TSP1 levels in astrocytes. Chronic (days) opioids repressed TSP1 gene expression and reduced its protein levels by µ opioid receptor and ERK-dependent mechanisms in astrocytes. Morphine also depleted TSP1 levels stimulated by TGFß1 and abolished ERK activation induced by this factor. Chronic morphine treatment of astrocyte-neuron co-cultures reduced neurite outgrowth and synapse formation. Therefore, inhibitory actions of morphine were detected after both acute and chronic treatments. An acute mechanism of morphine signaling to ERK that entails depletion of TSP1 levels was suggested by inhibition of morphine activation of ERK by a function-blocking TSP1 antibody. This raises the novel possibility that acute morphine uses TSP1 as a source of EGF-like ligands to activate EGFR. Chronic morphine inhibition of TSP1 is reminiscent of the negative effect of µ opioids on EGFR-induced astrocyte proliferation via a phospho-ERK feedback inhibition mechanism. Both of these variations of classical EGFR transactivation may enable opiates to diminish neurite outgrowth and synapse formation.


Subject(s)
Astrocytes/metabolism , Morphine/pharmacology , Narcotics/pharmacology , Neurites/metabolism , Synapses/metabolism , Thrombospondin 1/biosynthesis , Animals , Cell Line, Transformed , Cell Proliferation , Cerebral Cortex/metabolism , Enzyme Activation/drug effects , ErbB Receptors , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/drug effects , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Time Factors , Transforming Growth Factor beta1/metabolism
6.
J Neurochem ; 112(6): 1431-41, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19895666

ABSTRACT

As embryonic stem cell-derived neural progenitors (NPs) have the potential to be used in cell replacement therapy, an understanding of the signaling mechanisms that regulate their terminal differentiation is imperative. In previous studies, we discovered the presence of functional mu opioid receptors (MOR) and kappa opioid receptors (KOR) in mouse embryonic stem cells and NPs. Here, MOR and KOR immunoreactivity was detected in NP-derived oligodendrocytes during three stages of their maturation in vitro. Moreover, we examined the modulation of retinoic acid-induced NP differentiation to astrocytes and neurons by mu, [D-ala(2), mephe(4), gly-ol(5)] enkephalin, or kappa, U69, 593, opioids. Both opioid agonists inhibited NP-derived neurogenesis and astrogenesis via their corresponding receptors as determined by immunocytochemistry. By administering selective inhibitors, we found that opioid inhibition of NP-derived astrogenesis was driven via extracellular-signal regulated kinase (ERK), while the p38 mitogen-activated protein kinase pathway was implicated in opioid attenuation of neurogenesis. In addition, mu and kappa opioids stimulated oligodendrogenesis from NP-derived NG2(+) oligodendrocyte progenitors via both ERK and p38 signaling pathways. Accordingly, both opioids induced ERK phosphorylation in NG2(+) cells. These results indicate that small molecules, such as MOR and KOR agonists may play a modulatory role in NP terminal differentiation.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Analgesics, Opioid/pharmacology , Animals , Antigens/metabolism , Benzeneacetamides/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Drug Interactions , Embryo, Mammalian , Embryonic Stem Cells/drug effects , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Enzyme Inhibitors/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Mice , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Oligodendroglia/drug effects , Oligodendroglia/physiology , Peptides/pharmacology , Proteoglycans/metabolism , Pyrrolidines/pharmacology , Receptors, Opioid, kappa/agonists , Receptors, Opioid, mu/antagonists & inhibitors , Time Factors , Tretinoin/pharmacology , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...