Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(5): 6162-6175, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277509

ABSTRACT

Well-performing organic-inorganic halide perovskites are susceptible to poor efficiency and instability due to their various defects at the interphases, grain boundaries (GBs), and surfaces. In this study, an in situ method is utilized for effectively passivating the under-coordinated Pb2+ defects of perovskite with new non-fullerene acceptors (NFAs) (INXBCDT; X = H, Cl, and Br) through their carbonyl and cyano functional groups during the antisolvent dripping process. It reveals that the bicyclopentadithiophene (BCDT) core with highly electron-withdrawing end-capping groups passivates GBs and boosts perovskite grain growth. This effective defect passivation decreases the trap density to increase the carrier recombination lifetime of the perovskite film. As a result, bromo-substituted dicyanomethylene indanone (INBr)-end-capped BCDT (INBrBCDT-b8; 3a)-passivated devices exhibit the highest power conversion efficiency (PCE) of 22.20% (vs those of 18.09% obtained for perovskite films without passivation) upon an optimized film preparation process. Note that devices treated with more soluble 2-ethylhexyl-substituted compounds (1a, 2a, and 3a) exhibit higher PCE than those treated with less soluble octyl-substituted compounds (1b, 2b, and 3b). It is also worth noting that BCDT is a cost-effective six-ring core that is easier to synthesize with a higher yield and therefore much cheaper than those with highly fused-ring cores. In addition, a long-term stability test in a glovebox for 1500 h reveals that the perovskite solar cells (PSCs) based on a perovskite absorber treated with compound 3a maintain ∼90% of their initial PCE. This is the first example of the simplest high-conjugation additive for perovskite film to achieve a PCE greater than 22% of the corresponding lead-based PSCs.

2.
ACS Appl Mater Interfaces ; 12(13): 15071-15079, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32182036

ABSTRACT

A series of 3,3'-dithioalkyl-2,2'-bithiophene (SBT)-based organic chromophores were designed and developed for the use in dye-sensitized solar cells (DSSCs). By appropriate structural modification of the SBT π-linkers with different alkyl chains and conjugated thiophene units, chromophore aggregation and interfacial charge recombination could be suppressed to a remarkable degree. Single-crystal and optical/electrochemical data clearly show that the SBT core is nearly planar with the torsional angle <1°, likely via S(alkyl)···S(thiophene) intramolecular locks. Therefore, this highly π-conjugated unit should enhance panchromatic light-harvesting and prove to be an excellent core for organic dye. For comparison, the 3,3'-dialkyl-2,2'-bithiophene (BT)-based dye was also prepared. Under 1 sun (100 mW cm-2) illumination, an optimized SBT-6 dye-sensitized cell indicates a short-circuit current density (JSC) of 17.21 mA cm-2, an open-circuit voltage (VOC) of 0.78 V, and a fill factor (FF) of 0.71, corresponding to a power conversion efficiency (η) of 9.47%, which is nearly two times higher than that of alkylated bithiophene (BT)-based chromophores. Finally, the proposed sensitizer SBT-6 exhibited an excellent η of 23.57% under the T5 fluorescent illumination of 6000 lux. To the best of our knowledge, this is the highest power conversion efficiencies (PCE) value reported to date among the studied thiophene or bithiophene-based chromophores.

3.
ACS Appl Mater Interfaces ; 11(24): 21424-21434, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31014067

ABSTRACT

The design of a dye-sensitized solar cell (DSSC) based on the simultaneous incorporation of multiple dyes is examined. By investigating the use of the porphyrin-based YD2-o-C8 and YDD6, and the organic chromophore TTAR, which can act as complementary absorbers, we are able to enhance the capture of incoming light across the solar spectrum. This is demonstrated first by using a conventional DSSC architecture with a liquid electrolyte and performed a power conversion efficiency (PCE) of 11.2%, representing an improvement over cells based on each of the independent dyes. Next, we used Cs2SnI6 as an encapsulating layer over the sensitizing molecules to reduce charge leakage across the dye layers and also added to the absorption of longer wavelengths up to one micron. Finally, we fabricated a cell utilizing a Cs2SnI6/succinonitrile solid hole-transport electrolyte and achieved a PCE of ∼8.5%. It is expected that the all solid-state design will go a long way toward improving long-term device stability.

4.
ACS Appl Mater Interfaces ; 8(24): 15267-78, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27248206

ABSTRACT

A polymeric ionic liquid, poly(oxyethylene)-imide-imidazolium selenocyanate (POEI-IS), was newly synthesized and used for a multifunctional gel electrolyte in a quasi-solid-state dye-sensitized solar cell (QSS-DSSC). POEI-IS has several functions: (a) acts as a gelling agent for the electrolyte of the DSSC, (b) possesses a redox mediator of SeCN(-), which is aimed to form a SeCN(-)/(SeCN)3(-) redox couple with a more positive redox potential than that of traditional I(-)/I3(-), (c) chelates the potassium cations through the lone pair electrons of the oxygen atoms of its poly(oxyethylene)-imide-imidazolium (POEI-I) segments, and (d) obstructs the recombination of photoinjected electrons with (SeCN)3(-) ions in the electrolyte through its POEI-I segments. Thus, the POEI-IS renders a high open-circuit voltage (VOC) to the QSS-DSSC due to its functions of b-d and prolongs the stability of the cell due to its function of a. The QSS-DSSC with the gel electrolyte containing 30 wt % of the POEI-IS in liquid selenocyanate electrolyte exhibited a high VOC of 825.50 ± 3.51 mV and a high power conversion efficiency (η) of 8.18 ± 0.02%. The QSS-DSSC with 30 wt % POEI-IS retained up to 95% of its initial η after an at-rest stability test with the period of more than 1,000 h.

5.
Chem Asian J ; 10(8): 1640-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25930006

ABSTRACT

Three new donor-π-donor (D-π-D) tetrathienoacene (thieno[2',3':4,5]thieno[3,2-b]thieno[2,3-d]thiophene (TTA))-cored chromophores, end-functionalized with electron-donating triphenylamine (TPA) groups, were developed and characterized for their two-photon-related properties by using both nano- and femtosecond laser pulses as the probing tools. TTA-based chromophores exhibit stronger and more widely dispersed two-photon absorption (2PA) than those of dithienothiophene (DTT)-based congeners. As a consequence, the bithiophene-conjugated TTA chromophore exhibits the highest maximum 2PA cross-section value (up to 2500 GM) with good thermal stability, and thus, it is the best performing two-photon chromophore among the studied model compounds. The bithiophene-conjugated DTT analogue exhibits the second highest maximum two-photon absorptivity of 1950 GM, which is nearly 7 times larger than that of previously reported DTT-based chromophores.

6.
Org Lett ; 17(3): 536-9, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25602525

ABSTRACT

In the presence of substoichiometric amounts of Co2(CO)8, internal bisarylalkynes undergo reductive dimerization with good to excellent yields. The Co2(CO)8-induced reactions described are experimentally quite simple and provide a very useful synthetic procedure for the synthesis of tetraphenylbutadienes which exhibit aggregation-induced emission enhancement, i.e., weak emission in good solvents but strong fluorescence in solvents that lead toward formation of aggregates or in the solid state.


Subject(s)
Butadienes/chemical synthesis , Fluorescent Dyes/chemical synthesis , Butadienes/chemistry , Crystallography, X-Ray , Dimerization , Fluorescence , Fluorescent Dyes/chemistry , Molecular Structure , Solvents , Spectrometry, Fluorescence , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...