Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38539493

ABSTRACT

Liver malignancies, particularly hepatocellular carcinoma and metastasis, stand as prominent contributors to cancer mortality. Much of the data from abdominal computed tomography images remain underused by radiologists. This study explores the application of machine learning in differentiating tumor tissue from healthy liver tissue using radiomics features. Preoperative contrast-enhanced images of 94 patients were used. A total of 1686 features classified as first-order, second-order, higher-order, and shape statistics were extracted from the regions of interest of each patient's imaging data. Then, the variance threshold, the selection of statistically significant variables using the Student's t-test, and lasso regression were used for feature selection. Six classifiers were used to identify tumor and non-tumor liver tissue, including random forest, support vector machines, naive Bayes, adaptive boosting, extreme gradient boosting, and logistic regression. Grid search was used as a hyperparameter tuning technique, and a 10-fold cross-validation procedure was applied. The area under the receiver operating curve (AUROC) assessed the performance. The AUROC scores varied from 0.5929 to 0.9268, with naive Bayes achieving the best score. The radiomics features extracted were classified with a good score, and the radiomics signature enabled a prognostic biomarker for hepatic tumor screening.

2.
Sensors (Basel) ; 22(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35270858

ABSTRACT

Wireless sensor networks (WSNs) have several important applications, both in research and domestic use. Generally, their main role is to collect and transmit data from an ROI (region of interest) to a base station for processing and analysis. Therefore, it is vital to ensure maximum coverage of the chosen area and communication between the nodes forming the network. A major problem in network design is the deployment of sensors with the aim to ensure both maximum coverage and connectivity between sensor node. The maximum coverage problem addressed here focuses on calculating the area covered by the deployed sensor nodes. Thus, we seek to cover any type of area (regular or irregular shape) with a predefined number of homogeneous sensors using a genetic algorithm to find the best placement to ensure maximum network coverage under the constraint of connectivity between the sensors. Therefore, this paper tackles the dual problem of maximum coverage and connectivity between sensor nodes. We define the maximum coverage and connectivity problems and then propose a mathematical model and a complex objective function. The results show that the algorithm, called GAFACM (Genetic Algorithm For Area Coverage Maximization), covers all forms of the area for a given number of sensors and finds the best positions to maximize coverage within the area of interest while guaranteeing the connectivity between the sensors.


Subject(s)
Computer Communication Networks , Models, Theoretical , Algorithms , Communication
SELECTION OF CITATIONS
SEARCH DETAIL
...