Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Appl Microbiol ; 132(4): 2795-2811, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34995421

ABSTRACT

AIMS: How benzene is metabolized by microbes under anoxic conditions is not fully understood. Here, we studied the degradation pathways in a benzene-mineralizing, nitrate-reducing enrichment culture. METHODS AND RESULTS: Benzene mineralization was dependent on the presence of nitrate and correlated to the enrichment of a Peptococcaceae phylotype only distantly related to known anaerobic benzene degraders of this family. Its relative abundance decreased after benzene mineralization had terminated, while other abundant taxa-Ignavibacteriaceae, Rhodanobacteraceae and Brocadiaceae-slightly increased. Generally, the microbial community remained diverse despite the amendment of benzene as single organic carbon source, suggesting complex trophic interactions between different functional groups. A subunit of the putative anaerobic benzene carboxylase previously detected in Peptococcaceae was identified by metaproteomic analysis suggesting that benzene was activated by carboxylation. Detection of proteins involved in anaerobic ammonium oxidation (anammox) indicates that benzene mineralization was accompanied by anammox, facilitated by nitrite accumulation and the presence of ammonium in the growth medium. CONCLUSIONS: The results suggest that benzene was activated by carboxylation and further assimilated by a novel Peptococcaceae phylotype. SIGNIFICANCE AND IMPACT OF THE STUDY: The results confirm the hypothesis that Peptococcaceae are important anaerobic benzene degraders.


Subject(s)
Microbiota , Nitrates , Anaerobiosis , Benzene/metabolism , Nitrates/metabolism , Oxidation-Reduction , Peptococcaceae/metabolism
3.
Biodegradation ; 32(1): 37-52, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33269416

ABSTRACT

The Niger Delta is one of the most damaged ecosystems in the world, mainly due to petroleum contamination by oil exploration accidents. We investigated the natural attenuation potential of Niger Delta subsurface sediment samples for anaerobic hydrocarbon degradation using benzene as a model compound under iron-reducing, sulfate-reducing, and methanogenic conditions. Benzene was slowly mineralized under methanogenic and iron-reducing conditions using nitrilotriacetic acid (NTA)-Fe(III), or poorly crystalline Fe(III) oxyhydroxides as electron acceptors, analyzed by measurement of 13CO2 produced from added 13C-labelled benzene. Highest mineralization rates were observed in microcosms amended with Fe(III) oxyhydroxides. The microbial communities of benzene-mineralizing enrichment cultures were characterized by next-generation sequencing of the genes coding for 16S rRNA and methyl coenzyme M reductase A (mcrA). Abundant phylotypes were affiliated to Betaproteobacteriales, Ignavibacteriales, Desulfuromonadales, and Methanosarcinales of the genera Methanosarcina and Methanothrix, illustrating that the enriched benzene-mineralizing communities were diverse and may contain more than a single benzene degrader. The diversity of the microbial communities was furthermore confirmed by scanning helium-ion microscopy which revealed the presence of various rod-shaped as well as filamentous microbial morphotypes.


Subject(s)
Benzene , Microbiota , Anaerobiosis , Biodegradation, Environmental , Ferric Compounds , Microbiota/genetics , Niger , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...