Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(20): 206102, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829060

ABSTRACT

The liquid-to-solid phase transition is a complex process that is difficult to investigate experimentally with sufficient spatial and temporal resolution. A key aspect of the transition is the formation of a critical seed of the crystalline phase in a supercooled liquid, that is, a liquid in a metastable state below the melting temperature. This stochastic process is commonly described within the framework of classical nucleation theory, but accurate tests of the theory in atomic and molecular liquids are challenging. Here, we employ femtosecond x-ray diffraction from microscopic liquid jets to study crystal nucleation in supercooled liquids of the rare gases argon and krypton. Our results provide stringent limits to the validity of classical nucleation theory in atomic liquids, and offer the long-sought possibility of testing nonclassical extensions of the theory.

2.
Macromolecules ; 57(5): 2218-2229, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38495385

ABSTRACT

Here, we present a detailed description of the in situ isothermal crystallization of poly(trimethylene 2,5-furandicarboxylate)(PTF) as revealed by real-time Fourier transform infrared spectroscopy (FTIR) and grazing incidence wide-angle X-ray scattering (GIWAXS). From FTIR experiments, the evolution of hydrogen bonding with crystallization time can be monitored in real time, while from GIWAXS, crystal formation can be followed. Density functional theory (DFT) calculations have been used to simulate FTIR spectra for different theoretical structures, enabling a precise band assignment. In addition, based on DFT ab initio calculations, the influence of hydrogen bonding on the evolution with crystallization time can be understood. Moreover, from DFT calculations and comparison with both FTIR and GIWAXS experiments, a crystalline structure of poly(trimethylene 2,5-furandicarboxylate) is proposed. Our results demonstrate that hydrogen bonding is present in both the crystalline and the amorphous phases and its rearrangement can be considered as a significant driving force for crystallization of poly(alkylene 2,5-furanoate)s.

3.
Soft Matter ; 19(5): 959-972, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36633480

ABSTRACT

In the present study, a fully plant-based sustainable copolyester series, namely poly(butylene 2,5-furandicarboxylate)-block-poly(caprolactone)s (PBF-block-PCL)s were successfully synthesized by melt polycondensation combining butylene 2,5-furandicarboxylate with polycaprolactone diol (PCL) at different weight ratios. Differential scanning calorimetry (DSC) showed that only PBF underwent melting, crystallization from the melt, and cold crystallization. Thermogravimetric analysis (TGA) revealed outstanding thermal stability, exceeding 305 °C, with further improvement in thermal and thermo-oxidative stability with increasing PCL content. Broadband dielectric spectroscopy (BDS) revealed that at low temperatures, below the glass transition (Tg) all copolyesters exhibited two relaxation processes (ß1 and ß2), whereas the homopolymer PBF exhibited a single ß-relaxation, which is associated with local dynamics of the different chemical bonds present in the polymer chain. Additionally, it was proved that an increase in PCL content affected the dynamics of the chain making it more flexible, thus providing an increase in the value of the room temperature free volume fractions (fv) and the value of elongation at break. These effects are accompanied by a decrease in hardness, Young's modulus, and tensile strength. The described synthesis enables a facile approach to obtain novel fully multiblock biobased copolyesters based on PBF and PCL polyesters with potential industrial implementation capabilities.

4.
Polymers (Basel) ; 14(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501637

ABSTRACT

In this work, the formation of laser-induced periodic surface structures (LIPSS) on the surfaces of thin films of poly(ethylene terephthalate) (PET) and PET reinforced with expanded graphite (EG) was studied. Laser irradiation was carried out by ultraviolet (265 nm) and near-infrared (795 nm) femtosecond laser pulses, and LIPSS were formed in both materials. In all cases, LIPSS had a period close to the irradiation wavelength and were formed parallel to the polarization of the laser beam, although, in the case of UV irradiation, differences in the formation range were observed due to the different thermal properties of the neat polymer in comparison to the composite. To monitor the modification of the physicochemical properties of the surfaces after irradiation as a function of the laser wavelength and of the presence of the filler, different techniques were used. Contact angle measurements were carried out using different reference liquids to measure the wettability and the solid surface free energies. The initially hydrophilic surfaces became more hydrophilic after ultraviolet irradiation, while they evolved to become hydrophobic under near-infrared laser irradiation. The values of the surface free energy components showed changes after nanostructuring, mainly in the polar component. Additionally, for UV-irradiated surfaces, adhesion, determined by the colloidal probe technique, increased, while, for NIR irradiation, adhesion decreased. Finally, nanomechanical properties were measured by the PeakForce Quantitative Nanomechanical Mapping method, obtaining maps of elastic modulus, adhesion, and deformation. The results showed an increase in the elastic modulus in the PET/EG, confirming the reinforcing action of the EG in the polymer matrix. Additionally, an increase in the elastic modulus was observed after LIPSS formation.

5.
Soft Matter ; 18(32): 6105-6114, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35943033

ABSTRACT

We report on the preparation of micropatterned functional surfaces produced by inducing an out-of-plane deformation on elastic substrates and fixing these by creating a rigid oxidized top layer. Specifically, the elastic substrate used was Polydimethylsiloxane (PDMS) and the rigid layer on top was created by ozonation of this material. We evidenced that the surface pattern formed is directly dependent on the pressure applied, the mechanical properties of the elastic substrate and on the dimensions and shape of the mask employed to define the exposed and non-exposed areas. In addition to the pattern formed, another interesting aspect is related to the ozone diffusion within the material. Softer PDMS enables more efficient diffusion and produced a thicker oxidized layer in comparison to rigid PDMS. Finally, a simulation was carried out using the distribution of Von Misses stresses of a solid plate to understand the conditions in which the applied force resulted in the rupture of the rigid oxidized layer under a permanent deformation.

6.
Front Chem ; 10: 921787, 2022.
Article in English | MEDLINE | ID: mdl-35774857

ABSTRACT

This article presents an experimental study on the relaxation dynamics of a series of random copolymers based on bio-friendly comonomers with interesting gas barrier properties. We analyze the relaxation response in the glassy and ultraviscous regime of poly (trimethylene furanoate/sebacate) random copolymers via dielectric spectroscopy. We report lower values of dynamic fragility [a dimensionless index introduced in 1985 (Angell, Relaxations in Complex Systems, 1985)] in comparison to popular polyesters widely used in industry, such as poly (ethylene terephthalate), suggesting that the amorphous phase of these furanoate-based polyesters adopt an efficient chain packing. This is consistent with their low permeability to gases. We also discuss on different equations (phenomenological and theory-based approaches) for fitting the temperature-evolution of the alpha relaxation time.

7.
Nanomaterials (Basel) ; 11(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925285

ABSTRACT

Laser-based methods have demonstrated to be effective in the fabrication of surface micro- and nanostructures, which have a wide range of applications, such as cell culture, sensors or controlled wettability. One laser-based technique used for micro- and nanostructuring of surfaces is the formation of laser-induced periodic surface structures (LIPSS). LIPSS are formed upon repetitive irradiation at fluences well below the ablation threshold and in particular, linear structures are formed in the case of irradiation with linearly polarized laser beams. In this work, we report on the simple fabrication of a library of ordered nanostructures in a polymer surface by repeated irradiation using a nanosecond pulsed laser operating in the UV and visible region in order to obtain nanoscale-controlled functionality. By using a combination of pulses at different wavelengths and sequential irradiation with different polarization orientations, it is possible to obtain different geometries of nanostructures, in particular linear gratings, grids and arrays of nanodots. We use this experimental approach to nanostructure the semiconductor polymer poly(3-hexylthiophene) (P3HT) and the ferroelectric copolymer poly[(vinylidenefluoride-co-trifluoroethylene] (P(VDF-TrFE)) since nanogratings in semiconductor polymers, such as P3HT and nanodots, in ferroelectric systems are viewed as systems with potential applications in organic photovoltaics or non-volatile memories.

8.
Polymers (Basel) ; 14(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35012162

ABSTRACT

We reported on the interaction between poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and high-boiling-point additives in PEDOT:PSS aqueous dispersions and in the final polymer films with the aim of stablishing correlations between the structure of both inks and solid thin films. By Small-Angle X-ray Scattering (SAXS) using synchrotron radiation, it was found that the structural changes of dispersions of PEDOT:PSS with high-boiling-point additives can be explained as a two-step mechanism depending on the additive concentration. A compaction of PEDOT:PSS grains was observed at low concentrations while a swelling of the grains together with a phase segregation between PEDOT and PSS segments was evidenced at larger concentrations. Thin films' morphology and structure were investigated by atomic force microscopy (AFM) and synchrotron Grazing Incidence Wide-Angle X-ray Scattering (GIWAXS) respectively. Our two-step model provides an explanation for the small and sharp domains of PEDOT:PSS thin films observed for low-additive concentrations (first step) and larger domains and roughness found for higher-additive concentrations (second step). A reduction of the ratio of PSS in PEDOT:PSS thin films upon the presence of additives was also observed. This can be related to a thinning of the PSS shells of PEDOT:PSS grains in the dispersion. The results discussed in this work provide the basis for a controlled tuning of PEDOT:PSS thin films structure and the subsequent electrical properties.

9.
J Synchrotron Radiat ; 27(Pt 5): 1278-1288, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32876603

ABSTRACT

An accurate knowledge of the parameters governing the kinetics of block copolymer self-assembly is crucial to model the time- and temperature-dependent evolution of pattern formation during annealing as well as to predict the most efficient conditions for the formation of defect-free patterns. Here, the self-assembly kinetics of a lamellar PS-b-PMMA block copolymer under both isothermal and non-isothermal annealing conditions are investigated by combining grazing-incidence small-angle X-ray scattering (GISAXS) experiments with a novel modelling methodology that accounts for the annealing history of the block copolymer film before it reaches the isothermal regime. Such a model allows conventional studies in isothermal annealing conditions to be extended to the more realistic case of non-isothermal annealing and prediction of the accuracy in the determination of the relevant parameters, namely the correlation length and the growth exponent, which define the kinetics of the self-assembly.

10.
Polymers (Basel) ; 12(5)2020 May 10.
Article in English | MEDLINE | ID: mdl-32397666

ABSTRACT

We report the study of the formation of Laser Induced Periodic Surface Structures (LIPSS), with UV femtosecond laser pulses (λ = 265 nm), in free-standing films of both Poly(trimethylene terephthalate) (PTT) and the composite PTT/tungsten disulfide inorganic nanotubes (PTT-WS2). We characterized the range of fluences and number of pulses necessary to induce LIPSS formation and measured the topography of the samples by Atomic Force Microscopy, the change in surface energy and contact angle using the sessile drop technique, and the modification in both Young's modulus and adhesion force values with Peak Force-Quantitative Nanomechanical Mapping. LIPSS appeared parallel to the laser polarization with a period close to its wavelength in a narrow fluence and number of pulses regime, with PTT-WS2 needing slightly larger fluence than raw PTT due to its higher crystallinity and heat diffusion. Little change was found in the total surface energy of the samples, but there was a radical increase in the negative polar component (γ-). Besides, we measured small variations in the samples Young's modulus after LIPSS formation whereas adhesion is reduced by a factor of four. This reduction, as well as the increase in γ-, is a result of the modification of the surface chemistry, in particular a slight oxidation, during irradiation.

11.
Nat Mater ; 19(5): 512-516, 2020 May.
Article in English | MEDLINE | ID: mdl-32066929

ABSTRACT

Crystallization is a fundamental process in materials science, providing the primary route for the realization of a wide range of new materials. Crystallization rates are also considered to be useful probes of glass-forming ability1-3. At the microscopic level, crystallization is described by the classical crystal nucleation and growth theories4,5, yet in general solid formation is a far more complex process. In particular, the observation of apparently different crystal growth regimes in many binary liquid mixtures greatly challenges our understanding of crystallization1,6-12. Here, we study by experiments, theory and computer simulations the crystallization of supercooled mixtures of argon and krypton, showing that crystal growth rates in these systems can be reconciled with existing crystal growth models only by explicitly accounting for the non-ideality of the mixtures. Our results highlight the importance of thermodynamic aspects in describing the crystal growth kinetics, providing a substantial step towards a more sophisticated theory of crystal growth.

12.
ACS Sustain Chem Eng ; 8(25): 9558-9568, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-33796416

ABSTRACT

In the present paper, four fully biobased homopolyesters of 2,5-furandicarboxylic acid (2,5-FDCA) with a high molecular weight have been successfully synthesized by two-stage melt polycondensation, starting from the dimethyl ester of 2,5-FDCA and glycols of different lengths (the number of methylene groups ranged from 3 to 6). The synthesized polyesters have been first subjected to an accurate molecular characterization by NMR and gel-permeation chromatography. Afterward, the samples have been successfully processed into free-standing thin films (thickness comprised between 150 to 180 µm) by compression molding. Such films have been characterized from the structural (by wide-angle X-ray scattering and small-angle X-ray scattering), thermal (by differential scanning calorimetry and thermogravimetric analysis), mechanical (by tensile test), and gas barrier (by permeability measurements) point of view. The glycol subunit length was revealed to be the key parameter in determining the kind and fraction of ordered phases developed by the sample during compression molding and subsequent cooling. After storage at room temperature for one month, only the homopolymers containing the glycol subunit with an even number of -CH2- groups (poly(butylene 2,5-furanoate) (PBF) and poly(hexamethylene 2,5-furanoate) (PHF)) were able to develop a three-dimensional ordered crystalline phase in addition to the amorphous one, the other two appearing completely amorphous (poly(propylene 2,5-furanoate (PPF) and poly(pentamethylene 2,5-furanoate) (PPeF)). From X-ray scattering experiments using synchrotron radiation, it was possible to evidence a third phase characterized by a lower degree of order (one- or two-dimensional), called a mesophase, in all the samples under study, its fraction being strictly related to the glycol subunit length: PPeF was found to be the sample with the highest fraction of mesophase followed by PHF. Such a mesophase, together with the amorphous and the eventually present crystalline phase, significantly impacted the mechanical and barrier properties, these last being particularly outstanding for PPeF, the polyester with the highest fraction of mesophase among those synthesized in the present work.

13.
Nanomaterials (Basel) ; 9(10)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618891

ABSTRACT

This work reports a study on the influence of graphene oxide (GO) and reduced graphene oxide (rGO) on the functional properties of poly(trimethylene terephthalate)-block-poly(caprolactone) (PTT-block-PCL-T) (75/25 wt.%/wt.%) copolymer, obtained from dimethyl terephthalate (DMT), 1,3-biopropanediol and polycaprolactone diol (PCL) via in situ polymerization. The article presents, if and how the reduction of graphene oxide, in comparison to the non-reduced one, can affect morphological, thermal, electrical and mechanical properties. SEM examination confirms/reveals the homogeneous distribution of GO/rGO nanoplatelets in the PTT-block-PCL-T copolymer matrix. More than threefold increase in the value of the tensile modulus is achieved by the addition of 1.0 wt.% of GO and rGO. Moreover, the thermal conductivity and thermal stability of the GO and rGO-based nanocomposites are also improved. The differential scanning calorimetry (DSC) measurement indicates that the incorporation of GO and rGO has a remarkable impact on the crystallinity of the nanocomposites (an increase of crystallization temperature up to 58 °C for nanocomposite containing 1.0 wt.% of GO is observed). Therefore, the high performances of the PTT-block-PCL-T-based nanocomposites are mainly attributed to the uniform dispersion of nanoplatelets in the polymer matrix and strong interfacial interactions between components.

14.
Polymers (Basel) ; 11(2)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30960174

ABSTRACT

Ordered and homogeneous laser-induced periodic surface structures (LIPSS) could be fabricated in poly(3-hexyl thiophene):[6,6]-phenyl C71-butyric acid methyl ester (P3HT:PC71BM) blends by using wavelengths in the ultraviolet (UV) range (266 nm). The absorption coefficient of PC71BM, which is maximum in its UV⁻Visible absorption spectrum around 266 nm, enhanced the overall absorption of the blend. In addition, PC71BM itself was capable of developing homogeneous LIPSS by laser irradiation at λlaser = 266 nm. Therefore, we proposed that the synergistic effect of PC71BM on the LIPSS formation in P3HT:PC71BM (1:1) was due to a templating effect for the LIPSS formation of the PC71BM itself, which added to the overall increment of the absorption of the blend. LIPSS formation at ambient conditions in this wavelength range led to chemical modification of both P3HT and PC71BM, which rendered to non-conducting samples. Irradiation in vacuum significantly reduced radiation damage, rendering to the characteristic electrical conductivity pattern observed in P3HT LIPSS samples irradiated in the visible range. This effect could be of potential interest in order to obtain LIPSS in low absorbing polymers.

15.
Langmuir ; 34(1): 115-125, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29232145

ABSTRACT

In this work we report a broad scenario for the patterning of semiconducting polymers by laser-induced periodic surface structures (LIPSS). Based on the LIPSS formation in the semicrystalline poly(3-hexylthiophene) (P3HT), we have extended the LIPSS fabrication to an essentially amorphous semiconducting polymer like poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT). This polymer shows a good quality and well-ordered nanostructures not only at the 532 nm laser wavelength, as in the case of P3HT, but also at 266 nm providing gratings with smaller pitch. In addition, we have proven the feasibility of fabricating LIPSS in the P3HT/PCDTBT (1:1) blend, which can be considered as a model bulk-heterojunction for all-polymer solar cells. In spite of the heterogeneous roughness, due to phase separation in the blend, both P3HT and PCDTBT domains present well-defined LIPSS as well as a synergy for both components in the blend when irradiating at wavelengths of 532 and 266 nm. Both, P3HT and PCDTBT in the blend require lower fluence and less pulses in order to optimize LIPSS morphology than in the case of irradiating the homopolymers separately. Near edge X-ray absorption fine structure and Raman spectroscopy reveal a good chemical stability of both components in the blend thin films during LIPSS formation. In addition, scanning transmission X-ray spectro-microscopy shows that the mechanisms of LIPSS formation do not induce a further phase segregation neither a mixture of the components. Conducting atomic force microscopy reveals a heterogeneous electrical conductivity for the irradiated homopolymer and for the blend thin films, showing higher electrical conduction in the trenches than in the ridge regions of the LIPSS.

16.
ACS Appl Mater Interfaces ; 9(23): 20188-20195, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28521085

ABSTRACT

An unconventional strategy is proposed that takes advantage of localized high-deformation areas, referred to as folded wrinkles, to produce microstructured elastic surfaces with precisely controlled pattern dimensions and chemical distribution. For that purpose, elastic PDMS substrates were prestretched to a different extent and oxidized in particular areas using a mask. When the stretching was removed, the PDMS substrate exhibited out-of-plane deformations that largely depend on the applied prestretching. Prestretchings below 100% lead to affine deformations in which the treated areas are buckled. On the contrary, prestretchings above ε >100% prior to surface treatment induce the formation of folded wrinkles on those micrometer-size ultraviolet-ozone (UVO) treated areas upon relaxation. As a result, dual periodic wrinkles were formed due to the alternation of highly deformed (folded) and low deformed (buckled) areas. Our strategy is based on the surface treatment at precise positions upon prestretching of the elastic substrate (PDMS). Additionally, this approach can be used to template the formation of wrinkled surfaces by alternating lines of folded wrinkles (valleys) and low-deformed areas (hills). This effect allowed us to precisely tune the shape and distribution of the UVO exposed areas by varying the prestretching direction. Moreover, the wrinkle characteristics, including period and amplitude, exhibit a direct relation to the dimensions of the patterns present in the mask.

17.
Biomacromolecules ; 18(1): 169-177, 2017 01 09.
Article in English | MEDLINE | ID: mdl-27976857

ABSTRACT

Nanomechanical properties of alginate/chitosan (Alg/Chi) multilayer films, obtained through spray assisted layer-by-layer assembly, were studied by means of PeakForce quantitative nanomechanical mapping atomic force microscopy (PF-QNM AFM). Prepared at two different alginate concentrations (1.0 and 2.5 mg/mL) and a fixed chitosan concentration (1.0 mg/mL), Alg/Chi films have an exponential growth in thickness with a transition to a linear growth toward a plateau by increasing the number of deposited bilayers. Height, elastic modulus, deformation, and adhesion maps were simultaneously recorded depending on the number of deposited bilayers. The elastic modulus of Alg/Chi films was found to be related to the mechanism of growth in contrast to the adhesion and deformation. A comparison of the nanomechanical properties obtained for non-cross-linked and thermally cross-linked Alg/Chi films revealed an increase of the elastic modulus after cross-linking regardless alginate concentration. The incorporation of iron oxide nanoparticles (NPs), during the spray preparation of the films, gave rise to nanocomposite Alg/Chi films with increased elastic moduli with the number of incorporated NPs layers. Deformation maps of the films strongly suggested the presence of empty spaces associated with the method of preparation. Finally, adhesion measurements point out to a significant role of NPs on the increase of the adhesion values found for nanocomposite films.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Polysaccharides/chemistry , Elastic Modulus , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Microscopy, Atomic Force
18.
ACS Appl Mater Interfaces ; 8(46): 31894-31901, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27805362

ABSTRACT

We describe the conditions for optimal formation of laser-induced periodic surface structures (LIPSS) over poly(3-hexylthiophene) (P3HT) spin-coated films. Optimal LIPSS on P3HT are observed within a particular range of thicknesses and laser fluences. These conditions can be translated to the photovoltaic blend formed by the 1:1 mixture of P3HT and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) when deposited on an indium tin oxide (ITO) electrode coated with (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). Solar cells formed by using either a bilayer of P3HT structured by LIPSS covered by PC71BM or a bulk heterojunction with a P3HT:PC71BM blend structured by LIPSS exhibit generation of electrical photocurrent under light illumination. These results suggest that LIPSS could be a compatible technology with organic photovoltaic devices.

19.
J Phys Chem Lett ; 7(10): 1859-64, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27139835

ABSTRACT

Amyloid fibrils are exceptionally stable oligomeric structures with extensive, highly cooperative H-bonding networks whose physical origin remains elusive. While nonpolar systems benefit from both H-bonds and hydrophobic interactions, we found that highly polar sequences containing glutamine and asparagine amino acid residues form hyperpolarized H-bonds. This feature, observed by density functional theory calculations, encodes the origin of these polar oligomers' high stability. These results are explained in a theoretical model for complex amyloid assembly based on two different types of cooperative effects resulting from highly delocalized electrons, one of which is always present in both polar and hydrophobic systems. Experimental electric conductivity measurements, ThT fluorescence enhancement, and NMR spectroscopy support this proposal and reveal the conditions for disassembly.

20.
ACS Appl Mater Interfaces ; 7(35): 19611-8, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26280158

ABSTRACT

Polymer ferroelectric laser-induced periodic surface structures (LIPSS) have been prepared on ferroelectric thin films of a poly(vinylidene fluoride-trifluoroethylene) copolymer. Although this copolymer does not absorb light at the laser wavelength, LIPSS on the copolymer can be obtained by forming a bilayer with other light-absorbing polymers. The ferroelectric nature of the structured bilayer was proven by piezoresponse force microscopy measurements. Ferroelectric hysteresis was found on both the bilayer and the laser-structured bilayer. We show that it is possible to write ferroelectric information at the nanoscale. The laser-structured ferroelectric bilayer showed an increase in the information storage density of an order of magnitude, in comparison to the original bilayer.

SELECTION OF CITATIONS
SEARCH DETAIL
...