Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
J Cell Physiol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769895

ABSTRACT

Teriparatide is a peptide derived from a parathyroid hormone (PTH) and an osteoporosis therapeutic drug with potent bone formation-promoting activity. To identify novel druggable genes that act downstream of PTH signaling and are potentially involved in bone formation, we screened PTH target genes in mouse osteoblast-like MC3T3-E1 cells. Here we show that Gprc5a, encoding an orphan G protein-coupled receptor, is a novel PTH-inducible gene and negatively regulates osteoblast proliferation and differentiation. PTH treatment induced Gprc5a expression in MC3T3-E1 cells, rat osteosarcoma ROS17/2.8 cells, and mouse femurs. Induction of Gprc5a expression by PTH occurred in the absence of protein synthesis and was mediated primarily via the cAMP pathway, suggesting that Gprc5a is a direct target of PTH signaling. Interestingly, Gprc5a expression was induced additively by co-treatment with PTH and 1α, 25-dihydroxyvitamin D3 (calcitriol), or retinoic acid in MC3T3-E1 cells. Reporter analysis of a 1 kb fragment of human GPRC5A promoter revealed that the promoter fragment showed responsiveness to PTH via the cAMP response element, suggesting that GPRC5A is also a PTH-inducible gene in humans. Gprc5a knockdown promoted cell viability and proliferation, as demonstrated by MTT and BrdU assays. Gprc5a knockdown also promoted osteoblast differentiation, as indicated by gene expression analysis and mineralization assay. Mechanistic studies showed that Gprc5a interacted with BMPR1A and suppressed BMP signaling induced by BMP-2 and constitutively active BMP receptors, ALK2 (ACVR1) Q207D and ALK3 (BMPR1A) Q233D. Thus, our results suggest that Gprc5a is a novel gene induced by PTH that acts in an inhibitory manner on both cell proliferation and osteoblast differentiation and is a candidate for drug targets for osteoporosis.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37895866

ABSTRACT

A novel osteolytic disorder due to PFN1 mutation was discovered recently as early-onset Paget's disease of bone (PDB). Bone loss and pain in adult PDB patients have been treated using bisphosphonates. However, therapeutic strategies for this specific disorder have not been established. Here, we evaluated the efficiency of alendronate (ALN) on a mutant mouse line, recapitulating this disorder. Five-week-old conditional osteoclast-specific Pfn1-deficient mice (Pfn1-cKOOCL) and control littermates (33 females and 22 males) were injected with ALN (0.1 mg/kg) or vehicle twice weekly until 8 weeks of age. After euthanizing, bone histomorphometric parameters and skeletal deformities were analyzed using 3D µCT images and histological sections. Three weeks of ALN administration significantly improved bone mass at the distal femur, L3 vertebra, and nose in Pfn1-cKOOCL mice. Histologically increased osteoclasts with expanded distribution in the distal femur were normalized in these mice. Geometric bone shape analysis revealed a partial recovery from the distal femur deformity. A therapeutic dose of ALN from 5 to 8 weeks of age significantly improved systemic bone loss in Pfn1-cKOOCL mice and femoral bone deformity. Our study suggests that preventive treatment of bony deformity in early-onset PDB is feasible.

3.
JBMR Plus ; 7(9): e10784, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701150

ABSTRACT

Gorham-Stout disease (GSD), also called vanishing bone disease, is a rare osteolytic disease, frequently associated with lymphangiomatous tissue proliferation. The causative genetic background has not been noted except for a case with a somatic mutation in KRAS. However, in the present study, we encountered a case of GSD from a consanguineous family member. Whole-exome sequencing (WES) analysis focusing on rare recessive variants with zero homozygotes in population databases identified a homozygous missense variant (c.823G > C, p.Asp275His) in gasdermin D (GSDMD) in the patient and heterozygous in his unaffected brother. Because this variant affects the Asp275 residue that is involved in proteolytic cleavage by caspase-11 (as well as -4 and -5) to generate an activating p30 fragment required for pyroptotic cell death and proinflammation, we confirmed the absence of this cleavage product in peripheral monocytic fractions from the patient. A recent study indicated that a shorter p20 fragment, generated by further cleavage at Asp88, has a cell-autonomous function to suppress the maturation of osteoclasts to resorb bone matrix. Thus, the present study suggests for the first time the existence of hereditary GSD cases or novel GSD-like diseases caused by GSDMD deficiency. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

5.
J Bone Miner Metab ; 40(4): 561-570, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35428898

ABSTRACT

BACKGROUND: Profilin-1 (Pfn1), an evolutionarily conserved actin-binding protein, is an important regulator of the cytoskeleton. We previously reported the osteoclast-specific Pfn1-conditional knockout (cKO) mice had postnatal osteolytic phenotype with craniofacial and long-bone deformities associated with increased migration of cultured osteoclasts. We hypothesized the increased cellular processes structured with branched actin filaments may underlies the mechanism of increased bone resorption in these mutant mice. MATERIALS AND METHODS: The morphological structure and cell migration of the cultured osteoclasts were analyzed using fluorescent microscopy and time-lapse image capturing. Fractional migration distances, as well as the index of protrusive structures (%-PB) that evaluates relative border length of the protrusion were compared between the cells from control and Pfn1-cKO mice. RESULTS: Time-lapse image analysis showed that %-PB was significantly larger in Pfn1-cKO osteoclasts. In addition, the fractional migration distance was positively correlated with the index. When the branched actin filament organization was suppressed by chemical inhibitors, the osteoclast migration was declined. Importantly, the suppression was more extensive in Pfn1-cKO than in control osteoclasts. CONCLUSION: Our results indicated the causative involvement of the increased branched actin filament formation at least in part for their excessive migration. Our findings provide a mechanistic rationale for testing novel therapeutic approaches targeting branched actin filaments in osteolytic disorders.


Subject(s)
Osteoclasts , Profilins , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Bone and Bones/metabolism , Cell Movement , Mice , Osteoclasts/metabolism , Profilins/genetics , Profilins/metabolism
6.
Biochem Biophys Res Commun ; 534: 849-856, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33213843

ABSTRACT

Sarcopenia is among the most common medical problems of the aging population worldwide and a major social concern. Here, we explored the therapeutic potential of TM5484, a novel orally available PAI-1 inhibitor, to prevent sarcopenia. The sarcopenic phenotypes of the calf muscle of 12- and 6-month-old middle-aged mice were compared. Although significant decline of isometric gastrocnemius muscle force was detected in the older untreated mice, those administered TM5484 had significantly greater calf muscle force, as determined using isometric measurements by electrical stimulation. Histological analysis indicated that cross-sectional gastrocnemius muscle fibers in untreated older mice were thinner than those in younger mice; however, TM5484-treated group showed thicker fibers than younger mice. Treatment with TM5484 for 6 months enhanced Igf1, Atrogin-1, Mt-Co1, and Chrna1 mRNA expression in the mice gastrocnemius muscle, with increased serum IGF-1 concentration. TM5484 induced dose-dependent Igf1, Atrogin-1, and Chrna1 expression in C2C12 myoblastic cells, confirming cell autonomous effect. Further, the presence of plasmin for 72 h caused significantly increased Igf1 expression in C2C12 cells. These findings suggest that oral PAI-1 inhibitors represent a promising therapeutic candidate for preventing sarcopenia progression in humans.


Subject(s)
Muscle Fibers, Skeletal/drug effects , Muscular Atrophy/prevention & control , Plasminogen Activator Inhibitor 1/therapeutic use , Serine Proteinase Inhibitors/therapeutic use , Aging/drug effects , Animals , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Muscular Atrophy/physiopathology , Plasminogen Activator Inhibitor 1/chemistry , Sarcopenia/etiology , Sarcopenia/pathology , Sarcopenia/prevention & control , Serine Proteinase Inhibitors/chemistry
7.
Biochem Biophys Res Commun ; 528(4): 621-627, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32517870

ABSTRACT

Cytoplasmic polyadenylation element binding (CPEB) proteins are RNA-binding proteins involved in translational regulation of the specific target mRNAs and control function of various organs including brain, liver and hematopoietic system. However, the role of CPEB proteins during osteoclast differentiation remains unclear. Here we show that Cpeb4 is required for RANKL-induced osteoclast differentiation in mouse macrophage-derived RAW264.7 cell line. Cpeb4 mRNA and protein levels are upregulated at the late stage of osteoclast differentiation. Immunofluorescence analysis revealed that Cpeb4 is translocated from cytoplasm to nuclear bodies in response to RANKL stimulation. Inhibition of PI3K-Akt signaling or calcium-NFAT pathways using chemical inhibitors suppressed nuclear localization of Cpeb4. Loss-of-function analysis showed that shRNA-mediated Cpeb4 depletion strongly impaired TRAP-positive osteoclast formation and expression of key differentiation markers including Acp5, Ctsk, Nfatc1 and Dcstamp. These results suggest that Cpeb4 is a positive regulator in osteoclastogenesis downstream of RANKL signaling.


Subject(s)
Osteoclasts/cytology , Osteogenesis , RNA-Binding Proteins/metabolism , Animals , Mice , Osteoclasts/metabolism , RANK Ligand/metabolism , RAW 264.7 Cells , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Signal Transduction , Up-Regulation
8.
Bone ; 130: 115076, 2020 01.
Article in English | MEDLINE | ID: mdl-31622775

ABSTRACT

In the past decade, a growing importance has been placed on understanding the significance of long noncoding RNAs (lncRNAs) in regulating development, metabolism, and homeostasis. Osteoblast proliferation and differentiation are essential elements in skeletal development, bone metabolism, and homeostasis. However, the underlying mechanisms of lncRNAs in the process of osteoblast proliferation and differentiation remain largely unknown. Through comprehensive analysis of lncRNAs during bone formation, we show that colorectal neoplasia differentially expressed (Crnde), previously viewed as a cancer-related lncRNA, is an important regulator of osteoblast proliferation and differentiation. Crnde was found to be expressed in osteoblasts, and its expression was induced by parathyroid hormone. Furthermore, Crnde knockout mice developed a low bone mass phenotype due to impaired osteoblast proliferation and differentiation. Overexpression of Crnde in osteoblasts promoted their proliferation, and conversely, reduced Crnde expression inhibited osteoblast proliferation. Although ablation of Crnde inhibited osteoblast differentiation, overexpression of Crnde restored it. Finally, we provided evidence that Crnde modulates bone formation through Wnt/ß-catenin signaling. Therefore, our data suggest that Crnde is a novel regulator of bone metabolism.


Subject(s)
Colorectal Neoplasms , RNA, Long Noncoding , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Mice , Osteoblasts , RNA, Long Noncoding/genetics , Wnt Signaling Pathway/genetics
9.
JBMR Plus ; 3(6): e10130, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31346562

ABSTRACT

Profilin 1 (Pfn1), a regulator of actin polymerization, controls cell movement in a context-dependent manner. Pfn1 supports the locomotion of most adherent cells by assisting actin-filament elongation, as has been shown in skeletal progenitor cells in our previous study. However, because Pfn1 has also been known to inhibit migration of certain cells, including T cells, by suppressing branched-end elongation of actin filaments, we hypothesized that its roles in osteoclasts may be different from that of osteoblasts. By investigating the osteoclasts in culture, we first verified that Pfn1-knockdown (KD) enhances bone resorption in preosteoclastic RAW264.7 cells, despite having a comparable number and size of osteoclasts. Pfn1-KD in bone marrow cells showed similar results. Mechanistically, Pfn1-KD osteoclasts appeared more mobile than in controls. In vivo, the osteoclast-specific conditional Pfn1-deficient mice (Pfn1-cKO) by CathepsinK-Cre driver demonstrated postnatal skeletal phenotype, including dwarfism, craniofacial deformities, and long-bone metaphyseal osteolytic expansion, by 8 weeks of age. Metaphyseal and diaphyseal femurs were drastically expanded with suppressed trabecular bone mass as indicated by µCT analysis. Histologically, TRAP-positive osteoclasts were increased at endosteal metaphysis to diaphysis of Pfn1-cKO mice. The enhanced movement of Pfn1-cKO osteoclasts in culture was associated with a slight increase in cell size and podosome belt length, as well as an increase in bone-resorbing activity. Our study, for the first time, demonstrated that Pfn1 has critical roles in inhibiting osteoclast motility and bone resorption, thereby contributing to essential roles in postnatal skeletal homeostasis. Our study also provides novel insight into understanding skeletal deformities in human disorders.

10.
J Bone Miner Res ; 33(8): 1532-1543, 2018 08.
Article in English | MEDLINE | ID: mdl-29694681

ABSTRACT

Little is known about the molecular mechanisms of enthesis formation in mature animals. Here, we report that annexin A5 (Anxa5) plays a critical role in the regulation of bone ridge outgrowth at the entheses. We found that Anxa5 is highly expressed in the entheses of postnatal and adult mice. In Anxa5-deficient (Anxa5-/- ) mice, the sizes of bone ridge outgrowths at the entheses of the tibias and femur were increased after age 7 weeks. Bone overgrowth was not observed at the fibrous enthesis where the fibrocartilage layer does not exist. More ALP-expressing cells were observed in the fibrocartilage layer in Anxa5-/- mice than in wild-type (WT) mice. Calcein and Alizarin Red double labeling revealed more mineralized areas in Anxa5-/- mice than WT mice. To examine the effects of mechanical forces, we performed tenotomy in which transmission of contractile forces by the tibial muscle was impaired by surgical muscle release. In tenotomized mice, bone overgrowth at the enthesis in Anxa5-/- mice was decreased to a level comparable to that in WT mice at 8 weeks after the operation. The tail-suspended mice also showed a decrease in bone overgrowth to similar levels in Anxa5-/- and WT mice at 8 weeks after hindlimb unloading. These results suggest that bone overgrowth at the enthesis requires mechanical forces. We further examined effects of Anxa5 gene knockdown (KD) in primary cultures of osteoblasts, chondrocytes, and tenocytes in vitro. Anxa5 KD increased ALP expression in tenocytes and chondrocytes but not in osteoblasts, suggesting that increased ALP activity in the fibrocartilaginous tissue in Anxa5-/- mice is directly caused by Anxa5 deletion in tenocytes or fibrocartilage cells. These data indicate that Anxa5 prevents bone overgrowth at the enthesis, whose formation is mediated through mechanical forces and modulating expression of mineralization regulators. © 2018 American Society for Bone and Mineral Research.


Subject(s)
Annexin A5/metabolism , Bone Development , Bone and Bones/metabolism , Alkaline Phosphatase/metabolism , Animals , Annexin A5/deficiency , Cartilage/growth & development , Cell Differentiation , Chondrocytes/metabolism , Femur/growth & development , Femur/metabolism , Hindlimb/metabolism , Mice, Knockout , Osteoblasts/metabolism , Tendons/growth & development , Tenocytes/metabolism , Tibia/growth & development , Tibia/metabolism , Weight-Bearing
11.
Biochem Biophys Res Commun ; 498(4): 967-974, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29548825

ABSTRACT

Bone mass is determined by coordinated acts of osteoblasts and osteoclasts, which control bone formation and resorption, respectively. Osteoclasts are multinucleated, macrophage/monocyte lineage cells from bone marrow. The Dok-family adaptors Dok-1, Dok-2 and Dok-3 are expressed in the macrophage/monocyte lineage and negatively regulate many signaling pathways, implying roles in osteoclastogenesis. Indeed, mice lacking Dok-1 and Dok-2, the closest homologues with redundant functions, develop osteopenia with increased osteoclast counts compared to the wild-type controls. Here, we demonstrate that Dok-3 knockout (KO) mice also develop osteopenia. However, Dok-3 KO, but not Dok-1/-2 double-KO (DKO), mice develop larger osteoclasts within the normal cell-count range, suggesting a distinctive role for Dok-3. Indeed, Dok-3 KO, but not Dok-1/-2 DKO, bone marrow-derived cells (BMDCs) generated larger osteoclasts with more nuclei due to augmented cell-to-cell fusion in vitro. In addition, while Dok-1/-2 DKO BMDCs generated more osteoclasts, Dok-1/-2/-3 triple-KO (TKO) BMDCs generated osteoclasts increased in both number and size. Furthermore, Dok-1/-2/-3 TKO mice showed the combined effects of Dok-3 and Dok-1/-2 deficiency: severe osteopenia with more and larger osteoclasts. Together, our findings demonstrate that Dok-3 and Dok-1/-2 play distinctive but cooperative roles in osteoclastogenesis and protect mice from osteopenia, providing physiological and pathophysiological insight into bone homeostasis.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Bone Diseases, Metabolic/prevention & control , DNA-Binding Proteins/physiology , Osteoclasts/cytology , Osteogenesis , Phosphoproteins/physiology , RNA-Binding Proteins/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Bone Marrow Cells/cytology , Cell Count , Cell Culture Techniques , Cell Fusion , Cell Proliferation , Cell Size , DNA-Binding Proteins/genetics , Mice , Mice, Knockout , Phosphoproteins/genetics , RNA-Binding Proteins/genetics
12.
Genes Cells ; 23(5): 345-356, 2018 May.
Article in English | MEDLINE | ID: mdl-29521016

ABSTRACT

In mammals, the ovarian follicles are regulated at least in part by bone morphogenetic protein (BMP) family members. Dullard (also known as Ctdnep1) gene encodes a phosphatase that suppresses BMP signaling by inactivating or degrading BMP receptors. Here we report that the Col1a1-Cre-induced Dullard mutant mice displayed hemorrhagic ovarian cysts, with red blood cells accumulated in the follicles, resulting in infertility. Cells expressing Cre driven by Col1a1 2.3-kb promoter and their descendants were found in granulosa cells in the ovary and in Sertoli cells in the testis. DullardmRNA was localized to granulosa cells in the ovary. Genes involved in steroid hormone genesis including Cyp11a1, Hsd3b1 and Star were reduced, whereas expression of Smad6 and Smad7, BMP-inducible inhibitory Smads, was up-regulated in the Dullard mutant ovaries. Tamoxifen-inducible Dullard deletion in the whole body using Rosa26-CreER mice also resulted in hemorrhagic ovarian cysts in 2 weeks, which was rescued by administration of LDN-193189, a chemical inhibitor of BMP receptor kinase, suggesting that the hemorrhage in the Dullard-deficient ovarian follicles might be caused by increased BMP signaling. Thus, we conclude that Dullard is essential for ovarian homeostasis at least in part via suppression of BMP signaling.


Subject(s)
Collagen Type I/metabolism , Hemorrhage/pathology , Infertility, Female/pathology , Ovarian Cysts/pathology , Ovarian Follicle/pathology , Phosphoprotein Phosphatases/deficiency , Animals , Bone Morphogenetic Proteins/antagonists & inhibitors , Bone and Bones/metabolism , Bone and Bones/pathology , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Female , Gene Expression Regulation/drug effects , Hemorrhage/metabolism , Infertility, Female/metabolism , Male , Mice , Mice, Knockout , Ovarian Cysts/metabolism , Ovarian Follicle/metabolism , Phosphoprotein Phosphatases/physiology , Phosphorylation , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction , Smad Proteins/metabolism , Testis/metabolism , Testis/pathology
13.
J Cell Physiol ; 233(1): 259-268, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28233307

ABSTRACT

Osteocytes are the most abundant cells in bone and regulate bone metabolism in coordination with osteoblasts and osteoclasts. However, the molecules that control osteocytes are still incompletely understood. Profilin1 is an actin-binding protein that is involved in actin polymerization. Osteocytes possess characteristic dendritic process formed based on actin cytoskeleton. Here, we examined the expression of profilin1 and its function in osteocytes. Profilin1 mRNA was expressed in osteocytic MLO-Y4 cells and its levels were gradually increased along with the time in culture. With regard to functional aspect, knockdown of profilin1 by siRNA enhanced BMP-induced increase in alkaline phosphatase expression levels in MLO-Y4 cells. Profilin1 knockdown suppressed the levels of dendritic processes and migration of MLO-Y4 cells. Since aging causes an increase in ROS in the body, we further examined the effects of hydrogen peroxide on the expression of profilin1. Hydrogen peroxide treatment increased the levels of profilin1 mRNA in MLO-Y4 cells in contrast to the decline in alkaline phosphatase. Profilin1 was expressed not only in MLO-Y4cells but also in the primary cultures of osteocytes. Importantly, profilin1 mRNA levels in primary cultures of osteocytes were higher than those in primary cultures of osteoblasts. To examine in vivo role of profilin1 in osteocytes, profilin1 was conditionally knocked out by using DMP1-cre and profilin1 floxed mice. This conditional deletion of profilin1 specifically in osteocytes resulted in reduction in the levels of bone volume and bone mineral density. These data indicate that profilin1 is expressed in osteocytes and regulates cell shape, migration and bone mass.


Subject(s)
Cell Movement , Cell Shape , Femur/metabolism , Osteocytes/metabolism , Profilins/metabolism , Alkaline Phosphatase/metabolism , Animals , Bone Density , Bone Remodeling , Cell Line , Cell Movement/drug effects , Cell Shape/drug effects , Femur/diagnostic imaging , Femur/drug effects , Gene Expression Regulation , Genotype , Hydrogen Peroxide/pharmacology , Mice, Inbred C57BL , Mice, Knockout , Osteocytes/drug effects , Phenotype , Primary Cell Culture , Profilins/deficiency , Profilins/genetics , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Time Factors , Transfection , X-Ray Microtomography
14.
J Biol Chem ; 292(51): 20998-21010, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29084844

ABSTRACT

The bone is the main storage site for Ca2+ and Mg2+ ions in the mammalian body. Although investigations into Ca2+ signaling have progressed rapidly and led to better understanding of bone biology, the Mg2+ signaling pathway and associated molecules remain to be elucidated. Here, we investigated the role of a potential Mg2+ signaling-related lysosomal molecule, two-pore channel subtype 2 (TPC2), in osteoclast differentiation and bone remodeling. Previously, we found that under normal Mg2+ conditions, TPC2 promotes osteoclastogenesis. We observed that under low-Mg2+ conditions, TPC2 inhibited, rather than promoted, the osteoclast differentiation and that the phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) signaling pathway played a role in the TPC2 activation under low-Mg2+ conditions. Furthermore, PI(3,5)P2 depolarized the membrane potential by increasing the intracellular Na+ levels. To investigate how membrane depolarization affects osteoclast differentiation, we generated a light-sensitive cell line and developed a system for the light-stimulated depolarization of the membrane potential. The light-induced depolarization inhibited the osteoclast differentiation. We then tested the effect of myo-inositol supplementation, which increased the PI(3,5)P2 levels in mice fed a low-Mg2+ diet. The myo-inositol supplementation rescued the low-Mg2+ diet-induced trabecular bone loss, which was accompanied by the inhibition of osteoclastogenesis. These results indicate that low-Mg2+-induced osteoclastogenesis involves changes in the role of TPC2, which are mediated through the PI(3,5)P2 pathway. Our findings also suggest that myo-inositol consumption might provide beneficial effects in Mg2+ deficiency-induced skeletal diseases.


Subject(s)
Calcium Channels/metabolism , Magnesium/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Animals , Bone Remodeling/drug effects , Bone Remodeling/physiology , Bone Resorption/drug therapy , Bone Resorption/metabolism , Bone Resorption/pathology , Calcium Signaling , Cell Differentiation/drug effects , Cell Differentiation/physiology , Inositol/pharmacology , Lysosomes/metabolism , Magnesium Deficiency/drug therapy , Magnesium Deficiency/metabolism , Magnesium Deficiency/pathology , Male , Membrane Potentials , Mice , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteogenesis/physiology , Phosphatidylinositol Phosphates/metabolism , RAW 264.7 Cells , Sodium/metabolism
15.
J Cell Physiol ; 232(7): 1761-1766, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27861872

ABSTRACT

LGR4 is expressed in bone and has been shown to be involved in bone metabolism. Oxidative stress is one of the key issues in pathophysiology of osteoporosis. However, the link between Lgr4 and oxidative stress has not been known. Therefore, effects of hydrogen peroxide on Lgr4 expression in osteoblasts were examined. Hydrogen peroxide treatment suppressed the levels of Lgr4 mRNA expression in an osteoblastic cell line, MC3T3-E1. The suppressive effects were not obvious at 0.1 mM, while 1 mM hydrogen peroxide suppressed Lgr4 expression by more than 50%. Hydrogen peroxide treatment suppressed Lgr4 expression within 12 h and this suppression lasted at least up to 48 h. Hydrogen peroxide suppression of Lgr4 expression was still observed in the presence of a transcription inhibitor but was no longer observed in the presence of a protein synthesis inhibitor. Although Lgr4 expression in osteoblasts is enhanced by BMP2 treatment as reported before, hydrogen peroxide treatment suppressed Lgr4 even in the presence of BMP2. Finally, hydrogen peroxide suppressed Lgr4 expression in primary cultures of osteoblasts similarly to MC3T3-E1 cells. These date indicate that hydrogen peroxide suppresses Lgr4 expression in osteoblastic cells. J. Cell. Physiol. 232: 1761-1766, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Hydrogen Peroxide/toxicity , Osteoblasts/metabolism , Receptors, G-Protein-Coupled/metabolism , Alkaline Phosphatase/metabolism , Animals , Cell Line , Cytokines/pharmacology , Down-Regulation/drug effects , Mice , Osteoblasts/drug effects , Protein Synthesis Inhibitors/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/genetics , Time Factors , Transcription, Genetic/drug effects
16.
Bone ; 101: 179-190, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27170093

ABSTRACT

Bardet-Biedl Syndrome (BBS) is an autosomal recessive disorder and is classified as one of the ciliopathy. The patients manifest a characteristic craniofacial dysmorphology but the effects of Bbs3 deficiency in the developmental process during the craniofacial pathogenesis are still incompletely understood. Here, we analyzed a cranial development of a BBS model Bbs3-/- mouse. It was previously reported that these mutant mice exhibit a dome-shape cranium. We show that Bbs3-/- mouse embryos present mid-facial hypoplasia and solitary central upper incisor. Morphologically, these mutant mice show synchondrosis of the cranial base midline due to the failure to fuse in association with loss of intrasphenoidal synchondrosis. The cranial base was laterally expanded and longitudinally shortened. In the developing cartilaginous primordium of cranial base, cells present in the midline were less in Bbs3-/- embryos. Expression of BBS3 was observed specifically in a cell population lying between condensed ectomesenchyme in the midline and the ventral midbrain at this stage. Finally, siRNA-based knockdown of Bbs3 in ATDC5 cells impaired migration in culture. Our data suggest that BBS3 is required for the development of cranial base via regulation of cell migration toward the midline where they promote the condensation of ectomesenchyme and form the future cartilaginous templates of cranial base.


Subject(s)
ADP-Ribosylation Factors/metabolism , Bardet-Biedl Syndrome/metabolism , Skull Base/growth & development , Skull Base/metabolism , Zebrafish Proteins/metabolism , ADP-Ribosylation Factors/genetics , Animals , Bardet-Biedl Syndrome/genetics , Female , Fluorescent Antibody Technique , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Phenotype , X-Ray Microtomography , Zebrafish , Zebrafish Proteins/genetics
17.
J Cell Biochem ; 118(7): 1670-1677, 2017 07.
Article in English | MEDLINE | ID: mdl-27918072

ABSTRACT

Osteoporosis is one of the most prevalent ageing-associated diseases that are soaring in the modern world. Although various aspects of the disease have been investigated to understand the bases of osteoporosis, the pathophysiological mechanisms underlying bone loss is still incompletely understood. Poldip2 is a molecule that has been shown to be involved in cell migration of vascular cells and angiogenesis. However, expression of Poldip2 and its regulation in bone cells were not known. Therefore, we examined the Poldip2 mRNA expression and the effects of bone regulators on the Poldip2 expression in osteoblasts. We found that Poldip2 mRNA is expressed in osteoblastic MC3T3-E1 cells. As FGF controls osteoblasts and angiogenesis, FGF regulation was investigated in these cells. FGF suppressed the expression of Poldip2 in MC3T3-E1 cells in a time dependent manner. Protein synthesis inhibitor but not transcription inhibitor reduced the FGF effects on Poldip2 gene expression in MC3T3-E1 cells. As for bone-related hormones, dexamethasone was found to enhance the expression of Poldip2 in osteoblastic MC3T3-E1 cells whereas FGF still suppressed such dexamethasone effects. With respect to function, knockdown of Poldip2 by siRNA suppressed the migration of MC3T3-E1 cells. Poldip2 was also expressed in the primary cultures of osteoblast-enriched cells and FGF also suppressed its expression. Finally, Poldip2 was expressed in femoral bone in vivo and its levels were increased in aged mice compared to young adult mice. These data indicate that Poldip2 is expressed in osteoblastic cells and is one of the targets of FGF. J. Cell. Biochem. 118: 1670-1677, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Fibroblast Growth Factors/pharmacology , Mitochondrial Proteins/metabolism , Nuclear Proteins/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Animals , Cell Line , Cell Movement/drug effects , Cell Movement/genetics , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Nuclear Proteins/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction
18.
Calcif Tissue Int ; 99(2): 199-208, 2016 08.
Article in English | MEDLINE | ID: mdl-27086348

ABSTRACT

Heterotopic ossification (HO) in various tissues evokes clinical problems. Inflammatory responses of the stromal progenitor cells may be involved in its etiology. Previous report indicated that pro-inflammatory cytokines including IL-1ß enhanced the in vitro calcification of human mesenchymal stem cells (MSCs), by suppressing the expression of ectonucleotide pyrophosphatase/phosphodiesterase-1 gene (ENPP1). However, possible contribution of other related factors had not been investigated. Here, we investigated the expression of regulators of extracellular pyrophosphate and nucleosides including Enpp1, Nt5e, Ank, Enptds, and Ent1, examining various connective tissue stromal progenitor cells, including bone marrow stromal cells and synovium derived cells from mouse, or bone marrow MSCs from human. Consistent with previous studies, we observed characteristic suppression of the osteoblastic marker genes by IL-1ß during the osteogenic culture for 20 days. In addition, we observed a reduced expression of the important transporter genes, Ank and Ent1, whereas the alteration in Enpp1 and Nt5e levels was not always consistent among the cell types. Our results suggest that IL-1ß suppresses not only the osteoblastic but also the negative regulators of soft-tissue calcification, including Ank and Ent1 in stromal progenitor cells, which may contribute to the mechanisms of HO in various disorders.


Subject(s)
Cell Differentiation/drug effects , Equilibrative Nucleoside Transporter 1/metabolism , Interleukin-1beta/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Phosphate Transport Proteins/metabolism , Stromal Cells/drug effects , Animals , Calcification, Physiologic/drug effects , Calcification, Physiologic/physiology , Calcinosis/metabolism , Cell Differentiation/physiology , Cells, Cultured , Humans , Interleukin-1beta/metabolism , Mesenchymal Stem Cells/cytology , Mice , Osteogenesis/physiology , Stem Cells/drug effects , Stem Cells/metabolism , Stromal Cells/cytology
20.
Cell Tissue Res ; 364(3): 623-635, 2016 06.
Article in English | MEDLINE | ID: mdl-26753503

ABSTRACT

Bone formation is precisely regulated by cell-cell communication in osteoblasts. We have previously demonstrated that genetic deletion of Col6a1 or Col12a1 impairs osteoblast connections and/or communication in mice, resulting in bone mass reduction and bone fragility. Mutations of the genes encoding collagen VI cause Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM), which have overlapping phenotypes involving connective tissue and muscle. Recent studies have identified COL12A1 gene mutations in patients with UCMD- and BM-like disorders harboring no COL6 mutations, indicating the shared functions of these collagens in connective tissue homeostasis. The purpose of this investigation has been to test the hypothesis that collagens VI and XII have coordinate regulatory role(s) during bone formation. We analyzed the localization of collagens VI and XII relative to primary osteoblasts during osteogenesis. Immunofluorescence analysis demonstrated that collagens VI and XII colocalized in matrix bridges between adjacent cells during periods when osteoblasts were establishing cell-cell connections. Quantification of cells harboring collagen bridges demonstrated that matrix bridges were composed of collagens VI and XII but not collagen I. Interestingly, matrix bridge formation was impaired in osteoblasts deficient in either Col6a1 or Col12a1, suggesting that both collagens were indispensable for matrix bridge formation. These data demonstrate, for the first time, a functional relationship between collagens VI and XII during osteogenesis and indicate that a complex containing collagens VI and XII is essential for the formation of a communicating cellular network during bone formation.


Subject(s)
Cell Communication , Collagen Type VI/metabolism , Collagen Type XII/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis , Animals , Cells, Cultured , Collagen Type I/metabolism , Culture Media/pharmacology , Extracellular Matrix/metabolism , Mice , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...