Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37765055

ABSTRACT

Herein, a series of new isatin derivatives was designed and synthesized (1-9) as broad-spectrum antiviral agents. Consequently, the antiviral activities of the synthesized compounds (1-9) were pursued against three viruses, namely influenza virus (H1N1), herpes simplex virus 1 (HSV-1), and coxsackievirus B3 (COX-B3). In particular, compounds 9, 5, and 4 displayed the highest antiviral activity against H1N1, HSV-1, and COX-B3 with IC50 values of 0.0027, 0.0022, and 0.0092 µM, respectively. Compound 7 was the safest, with a CC50 value of 315,578.68 µM. Moreover, a quantitative PCR (real-time PCR) assay was carried out for the most relevant compounds. The selected compounds exhibited a decrease in viral gene expression. Additionally, the conducted in silico studies emphasized the binding affinities of the synthesized compounds and their reliable pharmacokinetic properties as well. Finally, a structure-antiviral activity relationship study was conducted to anticipate the antiviral activity change upon future structural modification.

2.
Bioorg Chem ; 129: 106186, 2022 12.
Article in English | MEDLINE | ID: mdl-36215786

ABSTRACT

Antimicrobial resistance (AMR) is one of the critical challenges that have been encountered over the past years. On the other hand, bacterial DNA gyrase is regarded as one of the most outstanding biological targets that quinolones can extensively inhibit, improving AMR. Hence, a novel series of 3-(7-nitro-3-oxo-3,4-dihydroquinoxalin-2-yl)propanehydrazide derivatives (3-6j) were designed and synthesized employing the quinoxaline-2-one scaffold and relying on the pharmacophoric features experienced by the quinolone antibiotic; ciprofloxacin. The antibacterial activity of the synthesized compounds was assessed via in-vitro approaches using eight different Gram-positive and Gram-negative bacterial species. Most of the synthesized compounds revealed eligible antibacterial activities. In particular, compounds 6d and 6e displayed promising antibacterial activity among the investigated compounds. For example, compounds 6d and 6e displayed MIC values of 9.40 and 9.00 µM, respectively, regarding S. aureus, and 4.70 and 4.50 µM, respectively, regarding S. pneumonia in comparison to ciprofloxacin (12.07 µM). The cytotoxicity of compounds 6d and 6e were performed on normal human WI-38 cell lines with IC50 values of 288.69 and 227.64 µM, respectively assuring their safety and selectivity. Besides, DNA gyrase inhibition assay of compounds 6d and 6e was carried out in comparison to ciprofloxacin, and interestingly, compounds 6d and 6e disclosed promising IC50 values of 0.242 and 0.177 µM, respectively, whereas ciprofloxacin displayed an IC50 value of 0.768 µM, assuring the proposed mechanism of action for the afforded compounds. Consequently, compounds 6d and 6e were further assessed via in-vivo approaches by evaluating blood counts, liver and kidney functions, and histopathological examination. Both compounds were found to be safer on the liver and kidney than the reference ciprofloxacin. Moreover, in-silico molecular docking studies were established and revealed reasonable binding affinities for all afforded compounds, particularly compound 6d which exhibited a binding score of -7.51 kcal/mol, surpassing the reference ciprofloxacin (-7.29 kcal/mol) with better anticipated stability at the DNA gyrase binding pocket. Moreover, ADME studies were conducted, disclosing an eligible bioavailability score of >0.55 for all afforded compounds, and reasonable GIT absorption without passing the blood brain barrier was attained for most investigated compounds, ensuring their efficacy and safety. Lastly, a structure activity relationship study for the synthesized compounds was established and unveiled that not only the main pharmacophores required for DNA gyrase inhibition are enough for exerting promising antimicrobial activities, but also derivatization with diverse aryl/hetero aryl aldehydes is essential for their enhanced antimicrobial potential.


Subject(s)
Quinolones , Topoisomerase II Inhibitors , Humans , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Ciprofloxacin , DNA Gyrase/metabolism , DNA, Bacterial , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Quinolones/pharmacology , Staphylococcus aureus/metabolism , Structure-Activity Relationship , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry
3.
J Enzyme Inhib Med Chem ; 37(1): 1098-1119, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35430934

ABSTRACT

Herein, a series of N'-benzylidene-3,4-dimethoxybenzohydrazide derivatives were designed and synthesised to target the multidrug efflux pump (MATE). The antibacterial activities were screened against S. aureus, Acinetobacter, S. typhi, E. coli, and P. aeruginosa, whereas their antifungal activities were screened against C. albicans. Compounds 4a, 4h, and 4i showed the most promising antibacterial and antifungal activities. Moreover, compounds 4h and 4i being the broader and superior members regarding their antimicrobial effects were selected to be further evaluated via in vivo testing using biochemical analysis and liver/kidney histological examination. Additionally, molecular docking was carried out to attain further deep insights into the synthesised compounds' binding modes. Also, ADMET studies were performed to investigate the physicochemical/pharmacokinetics features and toxicity parameters of the synthesised derivatives. Finally, a structure-antimicrobial activity relationship study was established to facilitate further structural modifications in the future. HighlightsA series of new N'-benzylidene-3,4-dimethoxybenzohydrazide derivatives were designed and synthesised targeting the multidrug efflux pump (MATE) guided by the pharmacophoric features of the co-crystallized native inhibitor of the target protein.The newly synthesised compounds were assessed through in vitro, in vivo, and in silico approaches.Using the agar well diffusion assay, the antibacterial activities of the synthesised compounds were screened against S. aureus, Acinetobacter, S. typhi, E. coli, and P. aeruginosa, whereas, their antifungal activities were screened against C. albicans.The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of the synthesised compounds were investigated on variable microbial species.Compounds (4h and 4i) -as the broader and superior members regarding their antimicrobial effects- were further evaluated via in vivo testing using bio-chemical analysis and liver/kidney histological examination.A molecular docking study and ADMET in silico studies were performed.A structure-antimicrobial activity relationship study was established to facilitate further structural modifications in the future.


Subject(s)
Anti-Infective Agents , Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Antifungal Agents/chemistry , Candida albicans , Escherichia coli , Ligands , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Pseudomonas aeruginosa , Structure-Activity Relationship
4.
J Enzyme Inhib Med Chem ; 37(1): 380-396, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34923885

ABSTRACT

In the current work, some 1,3,4-oxadiazole-naphthalene hybrids were designed and synthesised as VEGFR-2 inhibitors. The synthesised compounds were evaluated in vitro for their antiproliferative activity against two human cancer cell lines namely, HepG-2 and MCF-7. Compounds that exhibited promising cytotoxicity (5, 8, 15, 16, 17, and 18) were further evaluated for their VEGFR-2 inhibitory activities. Compound 5 showed good antiproliferative activity against both cell lines and inhibitory effect on VEGFR-2. Besides, it induced apoptosis by 22.86% compared to 0.51% in the control (HepG2) cells. This apoptotic effect was supported by a 5.61-fold increase in the level of caspase-3 compared to the control cells. Moreover, it arrested the HepG2 cell growth mostly at the Pre-G1 phase. Several in silico studies were performed including docking, ADMET, and toxicity studies to predict binding mode against VEGFR-2 and to anticipate pharmacokinetic, drug-likeness, and toxicity of the synthesised compounds.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Naphthalenes/pharmacology , Oxadiazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
5.
Bioorg Chem ; 116: 105300, 2021 11.
Article in English | MEDLINE | ID: mdl-34525393

ABSTRACT

Based on the biological importance of the thiazole nucleus, we decided to prepare and evaluate the biological activity of some new isatin derivatives containing thiazole moiety. The 5-(piperidin-1-ylsulfonyl)indoline-2,3-dione (1) was prepared and used as a starting material in the synthesis of many isatin derivatives for anticonvulsant evaluation. All the newly synthesized thiazlidino/thiosemicarbazide-indolin-2-one derivatives screened in vivo for their anticonvulsant activity against pentylenetetrazole-induced convulsions in mice. The results were compared with phenobarbitone sodium as a standard anticonvulsant drug. Most of the tested compounds exhibited anticonvulsant activity with relative potency ranging from 0.02 to 0.2 in comparison to standard drug phenobarbitone. The most active compounds 3, 6a, 6c and 8, were exposed to further investigations in rats to evaluate the effect of most active derivatives on the haematological, liver, kidney functions as well as histopathological studies of the liver and kidney tissues. Finally, the most potent compounds 3, 6a, 6c and 8 observed good toxic properties for both liver and kidney function with mild variability changes on RBCs, WBCs, Platelets, Hb, AST, ALT, and creatinine level, as well as kidney and liver tissue and these good results obtained rather than used low dose from phenobarbitone.


Subject(s)
Anticonvulsants/pharmacology , Seizures/drug therapy , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Injections, Intraperitoneal , Male , Mice , Molecular Structure , Oxindoles/chemistry , Oxindoles/pharmacology , Pentylenetetrazole/administration & dosage , Piperidines/chemistry , Piperidines/pharmacology , Seizures/chemically induced , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology
6.
Arch Pharm (Weinheim) ; : e2100258, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34467546

ABSTRACT

Targeting the epidermal growth factor receptors (EGFRs) with small inhibitor molecules has been validated as a potential therapeutic strategy in cancer therapy. Pyrazolo[3,4-d]pyrimidine is a versatile scaffold that has been exploited for developing potential anticancer agents. On the basis of fragment-based drug discovery, considering the essential pharmacophoric features of potent EGFR tyrosine kinase (TK) inhibitors, herein, we report the design and synthesis of new hybrid molecules of the pyrazolo[3,4-d]pyrimidine scaffold linked with diverse pharmacophoric fragments with reported anticancer potential. These fragments include hydrazone, indoline-2-one, phthalimide, thiourea, oxadiazole, pyrazole, and dihydropyrazole. The synthesized molecules were evaluated for their anticancer activity against the human breast cancer cell line, MCF-7. The obtained results revealed comparable antitumor activity with that of the reference drugs doxorubicin and toceranib. Docking studies were performed along with EGFR-TK and ADMET profiling studies. The results of the docking studies showed the ability of the designed compounds to interact with key residues of the EGFR-TK through a number of covalent and noncovalent interactions. The obtained activity of compound 25 (IC50 = 2.89 µM) suggested that it may serve as a lead for further optimization and drug development.

SELECTION OF CITATIONS
SEARCH DETAIL
...