Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
RSC Adv ; 14(26): 18395-18405, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38860249

ABSTRACT

Plant extracts used as corrosion inhibitor for mild steel usually degrade as the temperature increases above room temperature. In this study, we used Anacardium occidentale (cashew leaf) extract to synthesize silver nanoparticles for improving mild steel's inhibition stability under salinized conditions. Cashew leaves were used as a reducing agent to synthesise silver nanoparticles. The functional group of the silver nanoparticles was determined using Fourier transform infrared spectroscopy. Electrochemical impedance spectroscopy and potentiodynamic polarisation were used to study the corrosion behaviour under simulated seawater by varying the silver nanoparticle concentration between 0.1 and 0.3 g L-1. Scanning electron microscopy and atomic force microscopy were used to obtain information about the surface of the corroded sample. The green silver nanoparticles reduced the corrosion of mild steel up to 90.5% at 40 °C and 90% at 80 °C. At 80 °C, the AgNPs are biochemically and thermally stable, exhibiting a 90% inhibition efficiency. It was established that silver nanoparticles from cashew leaves can be used to improve the stability of mild steel in simulated seawater.

2.
ACS Omega ; 9(17): 19334-19344, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708257

ABSTRACT

Diabetes-induced kidney damage represents a substantial health hazard, emphasizing the imperative to explore potential therapeutic interventions. This study investigates the nephroprotective activity of flavonoid-rich extracts from Hibiscus sabdariffa leaves in streptozotocin-induced diabetic rats. The flavonoid-rich extracts of H. sabdariffa leaves was obtained using a standard procedure. The animals were induced with streptozotocin and thereafter treated with both low (LDHSFL) and high doses (HDHSFL) of flavonoid-rich extracts from H. sabdariffa leaves and metformin (MET), and other groups are diabetic control (DC) and normal control (NC). The study assesses diverse renal parameters, encompassing kidney redox stress biomarkers, serum electrolyte levels, kidney inflammatory biomarkers, serum concentrations of creatinine, urea, and uric acid, kidney phosphatase activities, renal histopathology, and relative gene expressions of kidney injury molecule-1 (KIM-1) and transforming growth factor beta-1 (TGF-1ß), comparing these measurements with normal and diabetic control groups (NC and DC). The findings indicate that the use of extracts from H. sabdariffa leaves markedly (p < 0.05) enhanced renal well-being by mitigating nephropathy, as demonstrated through the adjustment of various biochemical and gene expression biomarkers, indicating a pronounced antioxidative and anti-inflammatory effect, improved kidney morphology, and mitigation of renal dysfunction. These findings suggest that H. sabdariffa leaf flavonoid extracts exhibit nephroprotective properties, presenting a potential natural therapeutic approach for the treatment of diabetic nephropathy.

3.
RSC Adv ; 14(15): 10662-10671, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38567316

ABSTRACT

This work assessed the ability of Musa acuminata peduncle juice extract to sustainably inhibit mild steel under salinized conditions. The effort sought to ascertain the new active material's inhibitory efficacy for inhibiting metal corrosion in seawater. M. acuminata peduncle juice was extracted from the M. acuminata peduncle. The functional group of the M. acuminata pedal juice was determined using Fourier transform infrared spectroscopy. The corrosion behavior was assessed using electrochemical impedance spectroscopy and potentiodynamic polarization by varying the M. acuminata peduncle juice at 0.1, 0.2, and 0.3 g L-1 for 300 K, 310 K, and 320 K, respectively. Scanning electron microscopy provided an image of the surface morphology of mild steel. Reduced corrosion current (icorr) was observed when M. acuminata pedal juice was present according to potentiodynamic polarization and studies. Moreover, adding M. acuminata peduncle juice increases resistance capacity transfer (Rct). The potentiodynamic polarization approach was used to obtain the optimum inhibitory efficiency (%IE) at 0.3 g L-1 doses with 88.0% efficiency at 300 K. The addition of M. acuminata peduncle juice results in a smoother, mild steel morphology than the surface without inhibitor additions. The molecules of active chemicals adhering to the steel surface were linked to increased corrosion inhibition. The study's findings demonstrated that M. acuminata peduncle juice is a promising biomaterial for mild steel corrosion inhibitors in a salty environment.

4.
Environ Sci Pollut Res Int ; 31(17): 25373-25387, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472583

ABSTRACT

Mn3O4/ZnO-Al2O3-CeO2 catalyst was synthesized through a solid-state process from a 3% Mn-doped Zn-(Al/Ce) layered double hydroxide structure. Detailed structural and optical characterization using XRD, FTIR, UV-visible DRS, and TEM was conducted. By investigating clofibric acid (CA) degradation in aqueous solution, Mn3O4/ZnO-Al2O3-CeO2 photocatalytic activity was evaluated. The results show that the heterostructure mixed oxide catalyst has excellent CA photodegradation performance. Further, the characterization reveals that such photocatalytic efficiency can be attributed to two facts that are summarized in the optical properties and the synergic effect between Mn and Ce elements. The sample demonstrated a narrow band gap of 2.34 eV based on DRS. According to the experimental results of the photodegradation, after 120 min of irradiation, the photocatalyst exhibited the highest photocatalytic activity, with a degradation efficiency of 93.6%. Optimization outcomes indicated that maximum degradation efficiency was attained under the following optimum conditions: catalyst dose of 0.3 g/L, initial dye concentration of 20 mg/L, pH 3.86, and 120 min of reaction time. The quenching test demonstrates that photogenerated electrons and superoxide radicals are the most powerful reactive species. The catalyst could be useful in decreasing the photogenerated charges recombination, which offers more redox cycles simultaneously during the catalytic process. The strong Ce-Mn interaction and the formation of their different oxidation states offer a high degradation efficiency by facilitating electron-hole transfer. The introduction of Mn3O4 in the catalyst can effectively improve the visible absorption properties, which are beneficial in the photocatalytic process by reaching a high catalytic efficiency at a low cost.


Subject(s)
Oxides , Zinc Oxide , Oxides/chemistry , Water , Zinc Oxide/chemistry , Photolysis , Light , Zinc
5.
Polymers (Basel) ; 16(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38337310

ABSTRACT

Graphene-based materials have been widely studied in the field of supercapacitors. However, their electrochemical properties and applications are still restricted by the susceptibility of graphene-based materials to curling and agglomeration during production. This study introduces a facile method for synthesizing reduced graphene oxide (rGO) nanosheets and activated carbon based on olive stones (OS) with polyaniline (PAni) surface decoration for the development of supercapacitors. Several advanced techniques were used to examine the structural properties of the samples. The obtained PAni@OS-rGO (1:1) electrode exhibits a high electrochemical capacity of 582.6 F·g-1 at a current density of 0.1 A·g-1, and an energy density of 26.82 Wh·kg-1; thus, it demonstrates potential for efficacious energy storage. In addition, this electrode material exhibits remarkable cycling stability, retaining over 90.07% capacitance loss after 3000 cycles, indicating a promising long cycle life. Overall, this research highlights the potential of biomass-derived OS in the presence of PAni and rGO to advance the development of high-performance supercapacitors.

6.
Heliyon ; 10(4): e26443, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420395

ABSTRACT

This research entails a comparison of the effectiveness of unmodified Luffa cylindrica fiber in a fully packed bed (RLCF) and NaOH-modified Luffa cylindrica fiber in another fully packed bed (MLCF) in the context of phenol removal from wastewater. Experimental data obtained through batch adsorption experiments were utilized to determine the most suitable model. It was observed that as the initial concentration of phenol increased from 100 to 500 mg/l, the maximum percentage removal increased from 63.5 to 83.1% for RLCF-PB and from 89.9 to 99.5% for MLCF-PB. The correlation coefficient (R2) was calculated for the Langmuir, Freundlich, Temkin, Harkin-Jura, Halsey, and Flory-Huggins models for both materials. The analysis revealed that the pseudo-second-order model was the most suitable, followed by the Elovich model, with the pseudo-first-order model being the least suitable. The Weber-Morris diffusion model suggested that pore diffusion was the rate-determining step, and diffusion at the border layer was determined to be endothermic, feasible, heterogeneous, and spontaneous. In summary, this study indicates that MLCF-PB is a promising material for the efficient removal of phenol from aqueous solutions.

7.
Environ Res ; 241: 117621, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37952852

ABSTRACT

Anthracnose caused by Colletotrichum spp. usually resulting in significant postharvest losses in the banana production chain. This study investigated the inhibitory effect of corn cob colloidal/nanobiochar (CCN) and Gliricidia sepium wood colloidal/nanobiochar (GCN) on the Colletotrichum gloeosporioides species complex. The CCN and GCN materials were synthesized and thoroughly characterized using various techniques, including UV-Vis and Fluorescence spectroscopy. Then after the fungal growth was examined on Potato Dextrose Agar (PDA) media supplemented with different CCN and GCN concentrations of 0.4 - 20 g/L and CCN and GCN with zeolite at various weight percentages of 10% to 50% w/w. Results from the characterization revealed that CCN exhibited a strong UV absorbance peak value of 0.630 at 203 nm, while GCN had a value of 0.305 at 204 nm. In terms of fluorescence emission, CCN displayed a strong peak intensity of 16,371 at 412 nm, whereas GCN exhibited a strong peak intensity of 32,691 at 411 nm. Both CCN and GCN, at concentrations ranging from 1 to 8 and 0.4 - 20 g/L, respectively, displayed notable reductions in mycelial densities and inhibited fungal growth compared to the control. Zeolite incorporation further enhanced the antifungal effect. To the best of our knowledge, this is the first study to demonstrate the promising potential of colloidal/nanobiochar in effectively controlling anthracnose disease. The synthesized CCN and GCN demonstrate promising antifungal potential against Colletotrichum gloeosporioides species complex, offering the potential for the development of novel and effective antifungal strategies for controlling anthracnose disease in Musa spp.


Subject(s)
Colletotrichum , Zeolites , Antifungal Agents/pharmacology , Zeolites/pharmacology , Plant Diseases/microbiology
8.
Cureus ; 15(11): e49250, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38073996

ABSTRACT

AIM: Each year, approximately 25,000 patients present to NHS hospitals in the UK with epistaxis. This study aims to investigate the financial implications of epistaxis, focusing on cases managed conservatively. Specifically, the research explores the average cost of hospital bed stays, the length of hospitalization, and the impact of blood thinners on healthcare expenses.  Methods: A retrospective study spanning June 2022 to June 2023 collected data from electronic health records at our local district general hospital. Patients meeting inclusion criteria were analyzed for demographic information, duration of hospital stay, use of blood thinners, and outcomes. Statistical software (SAS and Excel) was used for data analysis. RESULTS: Out of 126 patients, conservatively managed epistaxis cases (n = 119) had an average age of 73.9 years, with 53.6% males. The mortality rate was 4.5%. The average hospital stay was 2.92 days. Approximately 57% of patients were taking blood thinners. The average cost of a hospital bed stay for epistaxis patients was £1,712.84, with a £259.69 difference between those on blood thinners and those not. CONCLUSION: Epistaxis imposes a significant financial burden on hospitals, with conservatively managed cases incurring substantial costs. Recognizing and addressing the financial implications of epistaxis is essential for healthcare providers and policymakers. Investment in preventative medicine and patient education can potentially reduce the incidence of epistaxis and alleviate the financial burden on healthcare systems.

9.
Ann Med Surg (Lond) ; 85(6): 2379-2385, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37363446

ABSTRACT

The septal perforation is a challenging condition that faces the otolaryngologist. The aim of our work was to evaluate this endoscopic repair of this septal perforation using a unilateral anterior ethmoid artery flap with or without a cartilage graft. Patients and methods: The authors conducted a retrospective cohort study between June 2020 and June 2022. Our study included all adult patients with septal perforation due to trauma (operative and self-induced) lasting for more than one year. Patients underwent an endoscopic repair of a perforation and a questionnaire regarding subjective quality of life was completed at 3 months postoperatively. Results: A total of 18 patients were included in our study. The main symptoms were crusting (100%), bleeding (38.85%), whistling (16.6%), anosmia (16.6), and nasal obstruction sensation (11%). The mean perforation size was 13.6 mm, ranging between 4 mm and 28 mm. Number of years with the perforation (ranged between 2 and 16 years) with a mean of 4.876±1.645 years and a mode of 2 years. All cases were repaired using an endoscopic unilateral anterior ethmoid artery flap with or without cartilage.There were no intraoperative complications but postoperatively, these included pain, ranging between a score of 2 and 8 on the pain score chart, (the mean score was five and mode was four, appeared in six patients), which was treated with over-the-counter painkillers. In addition, there was one patient (5%) with a residual small perforation (2 mm). All patients were happy to fill out postoperative patient satisfaction questionnaires after 3 months. The mean was 21.8889 ±1.655 points and the mode, 25 points (highest possible score), appeared four times. The lowest scoring questionnaire summated to 15 points. Conclusions: The endoscopic unilateral anterior ethmoid artery nasal flap with or without cartilage graft has proven to be a reliable and a valuable graft that, with proper planning, can provide excellent results with minimal morbidity for nasal septal perforation repair.

10.
ACS Omega ; 8(6): 6030-6039, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816702

ABSTRACT

New non-ionic surfactants based on alkylamine and poly(ethylene glycol) dimethacrylate were synthesized by one-step Aza-Michael addition reaction. The surfactants' chemical compositions, surface and interfacial activities, micellization, and zeta potential were characterized. Their surface and interfacial activities recommended the application as demulsifiers for water in Arabian heavy oil emulsions (w/o). The demulsification of this type of emulsion has attracted researchers' attention because of its high stability with water droplets in the microscale. The outcome of using the prepared surfactants showed high performance as emulsion breakers, as the demulsification efficiency reached 100% for w/o emulsions with different water to oil ratios (50:50, 30:70, and 10:90).

11.
Molecules ; 29(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202637

ABSTRACT

Almond shell-based biocarbon is a cheap adsorbent for the removal of malachite green, which has been investigated in this work. FT-IR, DRX, and BET were used to characterize almond shell-based biocarbon. The nitrogen adsorption-desorption isotherms analysis results showed a surface area of 120.21 m2/g and a type H4 adsorption isotherm. The parameters of initial dye concentration (5-600 mg.L-1), adsorbent mass (0.1-0.6 mg), and temperature (298-373 K) of adsorption were investigated. The experiments showed that the almond shell could be used in a wide concentration and temperature range. The adsorption study was fitted to the Langmuir isotherm and the pseudo-second-order kinetic model. The results of the FT-IR analysis demonstrated strong agreement with the pseudo-second-order chemisorption process description. The maximum adsorption capacity was calculated from the Langmuir isotherm and evaluated to be 166.66 mg.g-1. The positive ∆H (12.19 J.mol-1) indicates that the adsorption process is endothermic. Almond shell was found to be a stable adsorbent. Three different statistical design sets of experiments were taken out to determine the best conditions for the batch adsorption process. The optimal conditions for MG uptake were found to be adsorbent mass (m = 0.1 g), initial dye concentration (C0 = 600 mg.L-1), and temperature (T = 25 °C). The analysis using the D-optimal design showed that the model obtained was important and significant, with an R2 of 0.998.

12.
Gels ; 8(11)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36354609

ABSTRACT

The present study develops on insulin-release studies from the chitosan-amide-modified stimuli-responsive polymers formed from various fatty acids including stearic acid, oleic acid, linoleic acid, and linolenic acid. This is the continuation of an earlier reported study that investigates the insulin-release profiles of chitosan-modified fatty acid amides (without stimuli responsive polymers). Following the synthesis and characterization of many different fatty acid amides with a varying amount of unsaturation, the insulin drug loading and release effects were compared among N-isopropylacrylamide (NIPAm), a thermo-responsive polymer, and 2-acrylamide-2-methylpropane sulfonic acid (AMPS), a pH-responsive polymer-modified hydrogel that is expected to enhance environmental response and the controllability of release. Finally, drug release effects were studied to investigate the drug release mechanisms with the help of five different pharmacokinetic models including the zero-order, first-order, Higuchi, Korsmeyers-Peppas, and Hixson models. The results indicate that the Higuchi and Hixson models are valid in terms of the operation of the NIPAm and AMPS matrices during the delivery of insulin.

13.
Molecules ; 27(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35630715

ABSTRACT

This work aimed to use abietic acid (AA), as a widely available natural product, as a precursor for the synthesis of two new amphiphilic ionic liquids (AILs) and apply them as effective demulsifiers for water-in-crude oil (W/O) emulsions. AA was esterified using tetraethylene glycol (TEG) in the presence of p-toluene sulfonic acid (PTSA) as a catalyst obtaining the corresponding ester (AATG). AATG was reacted with 1-vinylimidazole (VIM) throughout the Diels-Alder reaction, forming the corresponding adduct (ATI). Following this, ATI was quaternized using alkyl iodides, ethyl iodide (EI), and hexyl iodide (HI) to obtain the corresponding AILs, ATEI-IL, and ATHI-IL, respectively. The chemical structure, surface activity, thermal stability, and relative solubility number (RSN) were investigated using different techniques. The efficiency of ATEI-IL and ATHI-IL to demulsify W/O emulsions in different crude oil: brine volumetric ratios were evaluated. ATEI-IL and ATHI-IL achieved promising results as demulsifiers. Their demulsification efficiency increased as the brine ratios decreased where their efficiency reached 100% at the crude oil: brine ratio (90:10), even at low concentrations.


Subject(s)
Ionic Liquids , Petroleum , Emulsions/chemistry , Iodides , Ionic Liquids/chemistry , Petroleum/analysis , Water/chemistry
14.
Molecules ; 27(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056754

ABSTRACT

In this work, new crosslinked pyridinium poly ionic liquid and its magnetite hybrid structured composite were prepared and applied to remove the toxic dye Coomassie Brilliant Blue (CBB-R250) from aqueous solutions. In this respect, vinyl pyridine, maleic anhydride, and dibromo nonane were used to prepare crosslinked quaternized vinyl pyridinium/maleic anhydride ionic liquid (CQVP-MA). Furthermore, a linear copolymer was prepared by the reaction of vinyl pyridine with bromo nonane followed by its copolymerization with maleic anhydride in order to use it as a capping agent for magnetite nanoparticles. The monodisperse MNPs were incorporated into the crosslinked PIL (CQVP-MA) by ultrasonication to prepare CQVP-MA/Fe3O4 composite to facilitate its recovery using an external magnetic field and enhance its adsorption capacity. The chemical structures, thermal stabilities, zeta potential, particle size, EDS, and SEM of the prepared CQVP-MA and CQVP-MA/Fe3O4 were investigated. Adsorption kinetics, isotherms, and mechanisms of CB-R250 elimination from aqueous solutions using CQVP-MA and CQVP-MA/Fe3O4 were also studied, and the results revealed that the pseudo second-order kinetic model and the Langmuir isotherm model were the most suitable to describe the CBB adsorption from an aqueous solution. The adsorption capacities of CQVP-MA and CQVP-MA/Fe3O4 were found to be 1040 and 1198, respectively, which are more than those for previously reported material in the literature with reasonable stability for five cycles.

15.
ACS Omega ; 6(7): 5061-5073, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33644615

ABSTRACT

Preparation of new green oilfield chemicals based on ionic liquids (ILs) having higher demulsification efficiency to solve the heavy crude oil brine water emulsions became a target in the petroleum research studies and industry. In the present work, the combination of pyridinium, imidazolium, and hydrophilic or hydrophobic moieties in the chemical structure of ILs has been investigated to improve the surface properties of ILs in both bulk solution and interfaces. Aminopyridine was quaternized with cetylbromide and condensed with glyoxal and 4-hydroxybenzaldehyde in acetic acid to prepare imidazolium-pyridinium bromide acetate ionic liquid (IPy-IL). The phenol group of IPy-IL was etherified with tetraethylene glycol to alter its amphiphilicity and synthesize new amphiphiles (AIPy-IL). Their chemical structure, thermal characteristics, and stabilities were characterized. Their aqueous solution performance in seawater was evaluated to investigate their surface activity, aggregation particle sizes, and surface charges. The demulsification performances of the prepared Arabic heavy crude oil seawater emulsions in the presence of different concentrations of IPy-IL and AIPy-IL were evaluated and proved by interfacial tension, particle size, and demulsification efficiencies at a temperature of 45 °C. The data concluded that AIPy-IL was an effective demulsifier for different crude oil seawater emulsion compositions at a low injection dose and temperature of 100 ppm and 45 °C, which were not report elsewhere.

16.
ACS Omega ; 5(16): 9212-9223, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32363273

ABSTRACT

The demulsification of water-in-heavy crude oil emulsion with water droplet size in the microscale has drawn great attention because of their high stability and difficulty of separation. In the present work, a series of ethylene amine-based demulsifiers were prepared in one step through the interaction of pentaethylene hexamine, tetraethylene pentamine, and triethylene tetramene with glycidyl 4-nonylphenyl ether. The amphiphilic polyethyleneimine (APEI) abbreviated as DNPA-6, DNPA-5, and DNPA-4 were prepared to adjust their hydrophile-lipophile balances (HLB) to meet the requirement of the demulsification. 1HNMR, 13CNMR, and FTIR spectra were utilized to verify their chemical structures. The surface properties and zeta potential were also investigated. Demulsifier dose, separation time, and HLB values were taken into account to evaluate the demulsification efficiency of the synthesized APEI. The results suggested that the prepared demulsifiers had high ability to reduce the surface and interfacial tensions and also broke successfully water-in-Arabian heavy crude oil emulsions. The demulsification efficiency of DNPA-5 reached 100% for crude oil/water emulsion (90/10 vol %).

17.
ACS Omega ; 5(6): 2829-2842, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32095705

ABSTRACT

Catalytic degradation of organic water pollutants has emerged as a cost- and energy-effective technique to treat wastewater. In this work, new silver and magnetite nanoparticles (NPs) were prepared with a protic poly(ionic liquid) (PIL) based on a quaternized diethylethanolamine cation combined with 2-acrylamido-2-methylpropane sulfonate-co-vinylpyrrolidone (QAMPSA/VP) as a capping and a reducing agent. The morphology, particle size, surface charge, thermal stability, and magnetic properties of QAMPS/VP-Ag and Fe3O4 NPs were investigated to determine the efficiency of the PIL as a reducing and a capping agent to protect the produced NPs from oxidation or thermal degradation. The activation energy, enthalpy, and entropy of the catalytic degradation of the cationic methylene blue (MB) dye in the presence of QAMPS/VP-Ag and Fe3O4 NPs were determined. The data elucidated that MB was completely degraded in 8 min in the presence of QAMPS/VP-Fe3O4 NPs as a Fenton oxidation catalyst. Moreover, their good magnetic properties allowed their easy separation and reuse for five cycles without losing their magnetic or catalytic properties.

18.
ACS Omega ; 4(25): 21288-21301, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31867523

ABSTRACT

New magnetic silica imidazolium ionic liquid nanocomposites were synthesized by a sol-gel technique. The (3-aminopropyl)triethoxysilane (APTS) was condensed with glyoxal and p-hydroxybenzaldehyde in acetic acid to produce an amino-modified silica ionic liquid (Si-IIL). The APTS was condensed with TEOS in ethanol and water to prepare amino-modified SiO2 nanoparticles. The produced amino-modified SiO2 silica was condensed with glyoxal and p-hydroxybenzaldehyde in acetic acid to produce chemically bonded silica SiO2-IIL. The SiO2-IIL and Si-IIL were used as capping agents during and after the formation of magnetite nanoparticles in ammonia to produce magnetic SiO2-IIL-Fe3O4 and Fe3O4-Si-IIL adsorbents, respectively. Their chemical structure, morphology, crystalline lattice structure, surface charges, particle sizes, and magnetic characteristics elucidated the formation of core-shell and highly dispersed magnetic nanocomposites. The saturation magnetization values of Fe3O4-Si-IIL and SiO2-IIL-Fe3O4 were 35.3 and 30.8, respectively. The uniform dispersed disconnected spherical morphologies appeared for Fe3O4-Si-IIL hybrid and the core-shell spherical morphology obtained with SiO2-IIL-Fe3O4 hybrid NPs. The Fe3O4-Si-IIL and SiO2-IIL-Fe3O4 show an excellent high chemical adsorption capacities as 460.3 and 300.9 mg·g-1, respectively (not reported in the literature) when used as an adsorbent to remove CB-R250 water pollutant under optimum conditions. Their applicability and reusability as fast and highly effective adsorbents for Coomassie blue (CB-R250) organic water pollutants were investigated.

19.
Nanomaterials (Basel) ; 9(12)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31816812

ABSTRACT

New pH-sensitive polystyrene, PS, and poly(4-vinylpyridine), P4-VP, nanospheres were prepared by using surfactant-free method based on soft microgels (Mickering emulsion). The formation of stable Mickering cyclohexane/water emulsions was investigated by using soft microgel particles of poly(acrylamide), PAAm, poly(2-acrylamido-2-methylpropane sulfonic acid), PAMPS, and sodium salt of PAMPS, PAMPS-Na, as stabilizers. The dynamic light scattering (DLS), optical microscopy, and scanning electron microscopy (SEM) were used to investigate the optimum conditions and effects of surrounding solutions on the microgels characteristics and their corresponding Mickering emulsions. The cyclohexane/water Mickering emulsions stabilized by softer and neutral charged microgels were considerably more stable under the same conditions. Furthermore, the stimuli-responsive properties of PAMPS microgel stabilized cyclohexane/water Mickering emulsions suggest the potential utility in the preparation of PS and P4-VP nanospheres. The effects of pH changes on the morphology, particle sizes, and surface charges of PS and P4-VP microgels were evaluated to prove the pH-sensitivity of the prepared nanospheres.

20.
Nanomaterials (Basel) ; 9(12)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810331

ABSTRACT

In this work, new smart mesoporous amine-functionalized silica nanoparticles were prepared from hydrolyzing microgels based on N-isopropyl acrylamide-co-vinyltrimethoxysilane microgels with tetraethoxysilicate and 3-aminopropyltriethoxysilane by sol-gel method. The thermal stability and Fourier transform infrared were used to determine the amine contents of the silica nanoparticles. The pH sensitivity of the synthesized silica nanoparticles in their aqueous solutions was evaluated by using dynamic light scattering (DLS) and zeta potential measurements. The porosity of the amine-functionalized silica nanoparticles was evaluated from a transmittance electron microscope and Brunauer-Emmett-Teller (BET) plot. The results have positively recommended the pH-sensitive amine-functionalized silica nanoparticles as one of the effective nano-adsorbent to remove 313 mg·g-1 of CB-R250 water pollutant.

SELECTION OF CITATIONS
SEARCH DETAIL
...