Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
J Ethnopharmacol ; 331: 118285, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38703873

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Herbs of the genus Juniperus (family Cupressaceae) have been commonly used in ancestral folk medicine known as "Al'Araar" for treatment of rheumatism, diabetes, inflammation, pain, and fever. Bioassay-guided isolation of bioactives from medicinal plants is recognized as a potential approach for the discovery of novel drug candidates. In particular, non-addictive painkillers are of special interest among herbal phytochemicals. AIM OF THE STUDY: The current study aimed to assess the safety of J. thurifera, J. phoenicea, and J. oxycedrus aqueous extracts in oral treatments; validating the traditionally reported anti-inflammatory and analgesic effects. Further phytochemical investigations, especially for the most bioactive species, may lead to isolation of bioactive metabolites responsible for such bioactivities supported with in vitro enzyme inhibition assays. MATERIALS AND METHODS: Firstly, the acute toxicity study was investigated following the OECD Guidelines. Then, the antinociceptive, and anti-inflammatory bioactivities were evaluated based on chemical and mechanical trauma assays and investigated their underlying mechanisms. The most active J. thurifera n-butanol fraction was subjected to chromatographic studies for isolating the major anti-inflammatory metabolites. Moreover, several enzymatic inhibition assays (e.g., 5-lipoxygenase, protease, elastase, collagenase, and tyrosinase) were assessed for the crude extracts and isolated compounds. RESULTS: The results showed that acute oral administration of the extracts (300-500 mg/kg, p. o.) inhibited both mechanically and chemically triggered inflammatory edema in mice (up to 70% in case of J. thurifera) with a dose-dependent antinociceptive (tail flick) and anti-inflammatory pain (formalin assay) activities. This effect was partially mediated by naloxone inhibition of the opioid receptor (2 mg/kg, i. p.). In addition, 3-methoxy gallic acid (1), quercetin (2), kaempferol (3), and ellagic acid (4) were successfully identified being involved most likely in J. thurifera extract bioactivities. Nevertheless, quercetin was found to be the most potent against 5-LOX, tyrosinase, and protease with IC50 of 1.52 ± 0.01, 192.90 ± 6.20, and 399 ± 9.05 µM, respectively. CONCLUSION: J. thurifera extract with its major metabolites are prospective drug candidates for inflammatory pain supported with inhibition of inflammatory enzymes. Interestingly, antagonism of opioid and non-opioid receptors is potentially involved.


Subject(s)
Analgesics , Anti-Inflammatory Agents , Juniperus , Plant Extracts , Plant Leaves , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Juniperus/chemistry , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Mice , Male , Plant Leaves/chemistry , Morocco , Female , Pain/drug therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Biological Assay , Edema/drug therapy , Edema/chemically induced , Inflammation/drug therapy
2.
Sci Rep ; 14(1): 2073, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267567

ABSTRACT

Ferulic acid (FA) has powerful antioxidant and antitumor activities, but it has low bioavailability owing to its poor water solubility. Our aim is to formulate polymeric mixed micelles loaded with FA to overcome its poor solubility and investigate its potential anticancer activity via miRNA-221/TP53INP1 axis-mediated autophagy in colon cancer. A D-optimal design with three factors was used for the optimization of polymeric mixed micelles by studying the effects of each of total Pluronics mixture (mg), Pluronic P123 percentage (%w/w), and drug amount (mg) on both entrapment efficiency (EE%) and particle size. The anticancer activity of FA and Tocopheryl polyethylene glycol 1000 succinate (TPGS) mixed micelles formula (O2) was assessed by MTT and flow cytometry. O2 showed an EE% of 99.89%, a particle size of 13.86 nm, and a zeta potential of - 6.02 mv. In-vitro drug release studies showed a notable increase in the release rate of FA from O2, as compared to the free FA. The (IC50) values for FA from O2 and free FA were calculated against different cell lines showing a prominent IC50 against Caco-2 (17.1 µg/ml, 191 µg/ml respectively). Flow cytometry showed that FA caused cell cycle arrest at the G2/M phase in Caco-2. RT-PCR showed that O2 significantly increased the mRNA expression level of Bax and CASP-3 (4.72 ± 0.17, 3.67 ± 0.14), respectively when compared to free FA (2.59 ± 0.13, 2.14 ± 0.15), while miRNA 221 levels were decreased by the treatment with O2 (0.58 ± 0.02) when compared to free FA treatment (0.79 ± 0.03). The gene expression of TP53INP1 was increased by the treatment with O2 compared to FA at P < 0.0001. FA-loaded TPGS mixed micelles showed promising results for enhancing the anticancer effect of FA against colorectal cancer, probably due to its enhanced solubility. Thus, FA-loaded TPGS mixed micelles could be a potential therapeutic agent for colorectal cancer by targeting miRNA-221/TP53INP1 axis-mediated autophagy.


Subject(s)
Colonic Neoplasms , Coumaric Acids , MicroRNAs , Humans , Micelles , Caco-2 Cells , Polymers , MicroRNAs/genetics , Carrier Proteins , Heat-Shock Proteins
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 763-781, 2024 02.
Article in English | MEDLINE | ID: mdl-37658210

ABSTRACT

This review aims to provide an in-depth analysis of the pharmacological properties of mangiferin, focusing primarily on its bioavailability and mechanisms of action, and its potential therapeutic applications, especially in the context of chronic diseases. We conducted a comprehensive examination of in vitro and in vivo studies, as well as clinical trials involving mangiferin or plant extracts containing mangiferin. The primary source of mangiferin is Mangifera indica, but it's also found in other plant species from the families Anacardiaceae, Gentianaceae, and Iridaceae. Mangiferin has exhibited a myriad of therapeutic properties, presenting itself as a promising candidate for treating various chronic conditions including neurodegenerative disorders, cardiovascular diseases, renal and pulmonary diseases, diabetes, and obesity. Despite the promising results showcased in many in vitro studies and certain animal studies, the application of mangiferin has been limited due to its poor solubility, absorption, and overall bioavailability. Mangiferin offers significant therapeutic potential in treating a spectrum of chronic diseases, as evidenced by both in vitro and clinical trials. However, the challenges concerning its bioavailability necessitate further research, particularly in optimizing its delivery and absorption, to harness its full medicinal potential. This review serves as a comprehensive update on the health-promoting and therapeutic activities of mangiferin.


Subject(s)
Mangifera , Xanthones , Animals , Humans , Biological Availability , Plant Extracts/pharmacology , Xanthones/pharmacology , Xanthones/therapeutic use , Chronic Disease
4.
Fitoterapia ; 173: 105782, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38128622

ABSTRACT

Stress, obesity, hormonal changes, and aging have been connected to cellulite aggravation resulting in skin dimpled appearance, a very common painless skin disorder with a female preponderance. Several Apiaceae plants have been traditionally used for cosmetic applications. However, their screening for anti-cellulite potential has not been deeply investigated. In this work, UPLC-HRMS/MS coupled with molecular networking was employed to glean a holistic overview of the chemodiversity of the metabolome of nine Apiaceae fruits. Additionally, the extracts were screened for in vitro antioxidant and anti-cellulite activities. Apium graveolens and Petroselinum crispum revealed excellent free radical scavenging activity, remarkably increased lipolysis, and decreased adipogenesis. Furthermore, apigenin and its glycosides were identified to be the major components in both extracts, which might be responsible for the antioxidant activity and anti-cellulite potential. Conclusively, these results signify the potent antioxidant and anti-cellulite properties of A. graveolens and P. crispum fruit extracts, holding potential for the development of plant derived products for cellulite management.


Subject(s)
Apiaceae , Cellulite , Antioxidants/pharmacology , Antioxidants/chemistry , Fruit , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Structure
5.
Eur J Med Res ; 28(1): 566, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053150

ABSTRACT

Leukemia is a group of malignant disorders which affect the blood and blood-forming tissues in the bone marrow, lymphatic system, and spleen. Many types of leukemia exist; thus, their diagnosis and treatment are somewhat complicated. The use of conventional strategies for treatment such as chemotherapy and radiotherapy may develop many side effects and toxicity. Hence, modern research is concerned with the development of specific nano-formulations for targeted delivery of anti-leukemic drugs avoiding toxic effects on normal cells. Nanostructures can be applied not only in treatment but also in diagnosis. In this article, types of leukemia, its causes, diagnosis as well as conventional treatment of leukemia shall be reviewed. Then, the use of nanoparticles in diagnosis of leukemia and synthesis of nanocarriers for efficient delivery of anti-leukemia drugs being investigated in in vivo and clinical studies. Therefore, it may contribute to the discovery of novel and emerging nanoparticles for targeted treatment of leukemia with less side effects and toxicities.


Subject(s)
Leukemia , Nanoparticles , Neoplasms , Humans , Drug Delivery Systems , Nanotechnology , Leukemia/diagnosis , Leukemia/drug therapy , Neoplasms/drug therapy
6.
BMC Complement Med Ther ; 23(1): 365, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845669

ABSTRACT

Non-small-cell lung carcinoma (NSCLC) is a type of epithelial lung cancer accounting for about 85% of all lung cancers. In our research, a novel lupene derivative namely acetoxy-lup-5(6), 20(29)-diene (ALUP), as well as two known triterpenes; lupeol (LUP) and betulinic acid (BA) were isolated through the chromatographic purification of the 95% ethanolic extract of Thymus capitatus. Identification of the compounds was carried out by physicochemical properties as well as spectral 1D and 2D NMR analysis. The anti-cancer activity of the three triterpenes was assessed on non-small cell lung cancer cell line; A549 using MTT assay and cell cycle analysis using annexin V/propidium iodide. The molecular mechanism underlying anti-apoptotic effects was determined by analyzing Let-7 miRNA and miRNA-21 expression, the mRNA gene expression level of Bax, CASP-8, CD95, Bcl2, KRAS, VEGF, Cyclin D1 using qRT-PCR. Our results revealed that the three isolated compounds ALUP, LUP, and BA caused cell cycle arrest at the G2/M phase with an increase in the apoptosis which may be attributed to their significant effect on raising Bax, CASP-8, and CD95 and reducing the mRNA expression levels of Bcl-2, KRAS, VEGF, and Cyclin D1 compared to control cells. RT-PCR results showed that the ALUP, LUP, and BA significantly downregulated miRNA-21 expression. Meanwhile, the three compounds caused significant overexpression of Let-7 miRNA. This is the first report on the anti-cancer activity of acetoxy-lup-5(6), 20(29)-diene (ALUP) in reducing the proliferation and differentiation of the A549 cell line through inducing apoptosis. Finally, by targeting the Let-7 miRNA/Cyclin D1/VEGF cascade, acetoxy-lup-5(6), 20(29)-diene could be a potential therapeutic agent for lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Triterpenes , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , A549 Cells , Vascular Endothelial Growth Factor A/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin D1/pharmacology , bcl-2-Associated X Protein/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , Proto-Oncogene Proteins p21(ras)/therapeutic use , Cell Line, Tumor , Apoptosis , MicroRNAs/genetics , Triterpenes/pharmacology , Triterpenes/therapeutic use , RNA, Messenger
7.
Sci Rep ; 13(1): 13034, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563154

ABSTRACT

Agri-food wastes, produced following industrial food processing, are mostly discarded, leading to environmental hazards and losing the nutritional and medicinal values associated with their bioactive constituents. In this study, we performed a comprehensive analytical and biological evaluation of selected vegetable by-products (potato, onion, and garlic peels). The phytochemical analysis included UHPLC-ESI-qTOF-MS/MS in combination with molecular networking and determination of the total flavonoid and phenolic contents. Further, the antimicrobial, anti-osteoarthritis and wound healing potentials were also evaluated. In total, 47 compounds were identified, belonging to phenolic acids, flavonoids, saponins, and alkaloids as representative chemical classes. Onion peel extract (OPE) showed the higher polyphenolic contents, the promising antioxidant activity, the potential anti-osteoarthritis activity, and promising antimicrobial activity, especially against methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, OPE revealed to have promising in vivo wound healing activity, restoring tissue physiology and integrity, mainly through the activation of AP-1 signaling pathway. Lastly, when OPE was loaded with nanocapsule based hydrogel, the nano-formulation revealed enhanced cellular viability. The affinities of the OPE major metabolites were evaluated against both p65 and ATF-2 targets using two different molecular docking processes revealing quercetin-3,4'-O-diglucoside, alliospiroside C, and alliospiroside D as the most promising entities with superior binding scores. These results demonstrate that vegetable by-products, particularly, those derived from onion peels can be incorporated as natural by-product for future evaluation against wounds and osteoarthritis.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Antioxidants/pharmacology , Antioxidants/analysis , Vegetables , Plant Extracts/pharmacology , Plant Extracts/chemistry , Molecular Docking Simulation , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Wound Healing , Flavonoids/analysis , Anti-Infective Agents/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis , Onions/chemistry
8.
Metabolites ; 13(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37512578

ABSTRACT

White, green, and oolong teas are produced from the tea plant (Camellia sinensis (L.) Kuntze) and are reported to have anti-obesity and hypolipidemic effects. The current study aims to investigate the anti-obesity effects of a tea mixture nano-formulation by targeting the AMPK/Sirt-1/GLUT-4 axis in rats. In vitro lipase and α-amylase inhibition assays were used to determine the active sample, which was then incorporated into a nanoparticle formulation subjected to in vivo anti-obesity testing in rats by measuring the expression level of different genes implicated in adipogenesis and inflammation using qRT-PCR. Moreover, metabolomic analysis was performed for each tea extract using LC/ESI MS/MS coupled to chemometrics in an attempt to find a correlation between the constituents of the extracts and their biological activity. The in vitro pancreatic lipase and α-amylase inhibition assays demonstrated more effective activity in the tea mixture than the standards, orlistat and acarbose, respectively, and each tea alone. Thus, the herbal tea mixture and its nanoparticle formulation were evaluated for their in vivo anti-obesity activity. Intriguingly, the tea mixture significantly decreased the serum levels of glucose and triglycerides and increased the mRNA expression of GLUT-4, P-AMPK, Sirt-1, and PPAR-γ, which induce lipolysis while also decreasing the mRNA expression of TNF-α and ADD1/SREBP-1c, thereby inhibiting the inflammation associated with obesity. Our study suggests that the tea mixture nano-formulation is a promising therapeutic agent in the treatment of obesity and may also be beneficial in other metabolic disorders by targeting the AMPK/Sirt-1/Glut-4 pathway.

9.
Food Sci Nutr ; 11(7): 4191-4210, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37457145

ABSTRACT

This systematic review identified various bioactive compounds which have the potential to serve as novel drugs or leads against acute myeloid leukemia. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy that arises from the dysregulation of cell differentiation, proliferation, and cell death. The risk factors associated with the onset of AML include long-term exposure to radiation and chemicals such as benzene, smoking, genetic disorders, blood disorders, advancement in age, and others. Although novel strategies to manage AML, including a refinement of the conventional chemotherapy regimens, hypomethylating agents, and molecular targeted drugs, have been developed in recent years, resistance and relapse remain the main clinical problems. In this study, three databases, PubMed/MEDLINE, ScienceDirect, and Google Scholar, were systematically searched to identify various bioactive compounds with antileukemic properties. A total of 518 articles were identified, out of which 59 were viewed as eligible for the current report. From the data extracted, over 60 bioactive compounds were identified and divided into five major groups: flavonoids, alkaloids, organosulfur compounds, terpenes, and terpenoids, and other known and emerging bioactive compounds. The mechanism of actions of the analyzed individual bioactive molecules differs remarkably and includes disrupting chromatin structure, upregulating the synthesis of certain DNA repair proteins, inducing cell cycle arrest and apoptosis, and inhibiting/regulating Hsp90 activities, DNA methyltransferase 1, and histone deacetylase 1.

10.
Bioorg Chem ; 139: 106743, 2023 10.
Article in English | MEDLINE | ID: mdl-37490810

ABSTRACT

The aim of the present study is to explore the potential anticancer effect of the cardenolide; acovenoside A against non-small cell lung cancer (NSCLC), understand its molecular mechanism in inducing apoptosis and show the effect of its combination with carboplatin and taxol. MTT assay showed that the combination of acovenoside A with taxol and carboplatin caused 78.9% cytotoxicity reflecting the synergistic effect. The triple combination showed the best growth inhibition efficiency where the number of cells at the G2/M phase was decreased and boosted up apoptotic and necrotic activity. The combination also showed the most remarkable increase in gene expression of Bax and p53 and the least level of Bcl2. The gene expression of miRNA181a and miRNA630 was significantly upregulated in cell lines treated with the combination. The present study has proven that the underlying mechanism of acovenoside A is partially attributed to the upregulation of miR-630 and miR-181a gene expressions which in turn targets the intrinsic apoptosis genes as p53, Bax and Bcl2 as well as caspase 3. The present study is the first to address the valuable effect of using acovenoside A together with carboplatin and taxol in the treatment of NSCLC via exerting apoptotic, antiproliferative, and cytotoxic effects..


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carboplatin/pharmacology , Paclitaxel/pharmacology , Lung Neoplasms/metabolism , bcl-2-Associated X Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation , Cell Line, Tumor
11.
Sci Rep ; 13(1): 2093, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36747067

ABSTRACT

Plant resins are rich in bioactive compounds with high medicinal values. However, the chemistry and anti-inflammatory activity of the resins produced by trees of the genus Eucalyptus were scarcely investigated. The inflammatory targets cyclooxygenase-1 (COX-1), COX-2, TNF-, NF-B, and NO were significantly inhibited by the methanolic extract of Eucalyptus maculata kino resin (EME) and its CH2Cl2 soluble fraction (MCF). Sakuranetin (C1), (E)-cinnamic acid (C2), kaempferol 7- methyl ether (C3), 7-O-methyl aromadendrin (C4), and 1,6- dicinnamoyl-O-α-D-glucopyranoside (C5) were isolated from MCF. Three compounds (C1, C2, and C4) showed potent in vitro COX-1 inhibition, while C5 inhibited COX-2, TNF-α, NF-κB, and NO significantly. An in-silico study revealed that C5 had the highest binding affinity to the active site in COX-2 with binding energy score (S) of -14.85 kcal/mol, better than celecoxib (COX-2 inhibitor). In conclusion, 1,6-dicinnamoyl-O-α-D-glucopyranoside (C5) could be investigated further in the search for anti-inflammatory agents.


Subject(s)
Eucalyptus , Eucalyptus/chemistry , Cyclooxygenase 2 , Anti-Inflammatory Agents/pharmacology , Phenols , Plant Extracts/pharmacology , NF-kappa B
12.
RSC Adv ; 13(7): 4436-4475, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36760290

ABSTRACT

Vector-borne diseases (VBDs) are a worldwide critical concern accounting for 17% of the estimated global burden of all infectious diseases in 2020. Despite the various medicines available for the management, the deadliest VBD malaria, caused by Plasmodium sp., has resulted in hundreds of thousands of deaths in sub-Saharan Africa only. This finding may be explained by the progressive loss of antimalarial medication efficacy, inherent toxicity, the rise of drug resistance, or a lack of treatment adherence. As a result, new drug discoveries from uncommon sources are desperately needed, especially against multi-drug resistant strains. Marine organisms have been investigated, including sponges, soft corals, algae, and cyanobacteria. They have been shown to produce many bioactive compounds that potentially affect the causative organism at different stages of its life cycle, including the chloroquine (CQ)-resistant strains of P. falciparum. These compounds also showed diverse chemical structures belonging to various phytochemical classes, including alkaloids, terpenoids, polyketides, macrolides, and others. The current article presents a comprehensive review of marine-derived natural products with antimalarial activity as potential candidates for targeting different stages and species of Plasmodium in both in vitro and in vivo and in comparison with the commercially available and terrestrial plant-derived products, i.e., quinine and artemisinin.

13.
High Blood Press Cardiovasc Prev ; 30(2): 93-107, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36637623

ABSTRACT

The glycoprotein (GP) IIb/IIIa receptor is found integrin present in platelet aggregations. GP IIb/IIIa antagonists interfere with platelet cross-linking and platelet-derived thrombus formation through the competition with fibrinogen and von Willebrand factor. Currently, three parenteral GP IIb/IIIa competitors (tirofiban, eptifibatide, and abciximab) are approved for clinical use in patients affected by percutaneous coronary interventions (PCI) in the location of acute coronary syndrome (ACS). GP IIb/IIIa antagonists have their mechanism of action in platelet aggregation prevention, distal thromboembolism, and thrombus formation, whereas the initial platelet binding to damage vascular areas is preserved. This work is aimed to provide a comprehensive review of the significance of GP IIb/IIIa inhibitors as a sort of antiplatelet agent. Their mechanism of action is based on factors that affect their efficacy. On the other hand, drugs that inhibit GP IIb/IIIa already approved by the FDA were reviewed in detail. Results from major clinical trials and regulatory practices and guidelines to deal with GP IIb/IIIa inhibitors were deeply investigated. The cardiovascular pathology and neuro-interventional surgical application of GP IIb/IIIa inhibitors as a class of antiplatelet agents were developed in detail. The therapeutic risk/benefit balance of currently available GP IIb/IIa receptor antagonists is not yet well elucidated in patients with ACS who are not clinically evaluated regularly for early cardiovascular revascularization. On the other hand, in patients who have benefited from PCI, the antiplatelet therapy intensification by the addition of a GP IIb/IIIa receptor antagonist (intravenously) may be an appropriate therapeutic strategy in reducing the occurrence of risks of thrombotic complications related to the intervention. Development of GP IIb/IIIa inhibitors with oral administration has the potential to include short-term antiplatelet benefits compared with intravenous GP IIb/IIIa inhibitors for long-term secondary preventive therapy in cardiovascular disease. But studies showed that long-term oral administration of GP IIb/IIIa receptor inhibitors has been ineffective in preventing ischemic events. Paradoxically, they have been linked to a high risk of side effects by producing prothrombotic and pro-inflammatory events.


Subject(s)
Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors , Humans , Platelet Aggregation Inhibitors/therapeutic use , Platelet Membrane Glycoprotein IIb , Platelet Glycoprotein GPIIb-IIIa Complex , Abciximab
14.
Comb Chem High Throughput Screen ; 26(12): 2099-2112, 2023.
Article in English | MEDLINE | ID: mdl-36476432

ABSTRACT

Alzheimer's disease (AD) is an increasingly common neurodegenerative disease that attracts the attention of researchers and medical community in order to develop new, safe and more effective drugs. Currently available drugs could only slow the AD progression and relieve the symptoms, in addition to being linked to moderate-to-severe side effects. N-methyl D-aspartate (NMDA) receptors antagonists were reported to have the ability to block the glutamate-mediated excitotoxic activity being good therapeutic targets for several neurodegenerative diseases, including AD. Based on data obtained so far, this review provides an overview over the use of NMDA antagonists for AD treatment, starting with a key emphasis on present features and future aspects regarding the use of NMDA antagonists for AD, and lastly a key focus is also given on its use in precision medicine.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/drug therapy , Neurodegenerative Diseases/drug therapy , Memantine/pharmacology , Memantine/therapeutic use , N-Methylaspartate/therapeutic use , Receptors, N-Methyl-D-Aspartate/therapeutic use
15.
Nat Prod Res ; 37(11): 1856-1862, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36054770

ABSTRACT

Eurycoma longifolia Jack is one of traditional herbal medicines in South-East Asia. This study evaluated the anticancer, cell-cycle arrest, and apoptotic induction potentials of eurycomanone (EONE) and eurycomanol (EOL), highly oxygenated quassinoids previously isolated from its roots, against large (H460) and small (A549) lung cancer cells. EOL and EONE exhibited IC50 of 386 and 424 µg/mL on normal human lung cell line. EONE exhibited higher anticancer activity with an IC50 of 1.78 µg/mL and 20.66 µg/mL than EOL which exhibited an IC50 of 3.22 µg/mL and 38.05 µg/mL against H460 and A549, respectively. Both reduced the viability of H460 and A549 and arrested G0/G1 phase. The increase in the apoptotic rates was mainly in the percentage of late apoptosis. Moreover, they inhibited A549 by inducing the accumulation of S and G2/M phases. This study revealed EOL and EONE potential as novel leads exhibiting cell-cycle arrest and apoptosis induction potentials.


Subject(s)
Lung Neoplasms , Quassins , Humans , Lung Neoplasms/drug therapy , Apoptosis , Plant Extracts/pharmacology , Cell Cycle Checkpoints , Cell Line, Tumor
16.
Food Chem ; 398: 133906, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35988413

ABSTRACT

Nigella sativa L. seeds (NS) are known as one of the most traditional immunomodulatory and nutritive food additives. NS can, furthermore, be roasted to give curries, breads, and other dishes a smoky, nutty flavor. This study evaluated the effect of roasting NS on the metabolic profile and immunomodulatory activity. Non-targeted metabolomics analysis was conducted using several analytical platforms, including GC-MS and UPLC-MS. A total of 197 metabolites were identified, belonging to different classes such as saponins, alkaloids, flavonoids, and lipids. In vitro immunomodulatory activity on the differentiated monocytic cell line THP-1 was assessed, revealing that the roasted seeds showed significantly-decreased immunomodulatory activity. Furthermore, a molecular docking study, which was carried out against immunomodulation-related pathway protein (iNOS), revealed that compounds which showed the best binding scores were severely decreased by roasting. Conclusively, our results demonstrate that the roasting of NS results in severe losses in their bioactive metabolites and immunomodulatory activity.


Subject(s)
Nigella sativa , Chromatography, Liquid , Immunomodulation , Molecular Docking Simulation , Nigella sativa/chemistry , Seeds/chemistry , Tandem Mass Spectrometry
17.
ACS Omega ; 7(50): 46524-46535, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36570254

ABSTRACT

Cuphea ignea A. DC. is an ornamental tropical plant belonging to the family Lythraceae. The aim of this study is to verify the in vivo antihypertensive potential of C. ignea A. DC. and to explore its metabolic profile using a UHPLC-Orbitrap-HRMS technique. The results revealed that the ethanolic extract of the leaves in two doses (250 and 500 mg/kg b.wt.) significantly normalized the elevated systolic blood pressure in N(G)-nitro-l-arginine-methyl ester-induced hypertension in rats. An angiotensin-converting enzyme (ACE) concentration was significantly decreased by the high dose extract compared to lisinopril. Nitric oxide (NO) level was significantly restored by both doses. Concerning the oxidative stress parameters, both doses displayed significant reduction in malondialdehyde (MDA) level while the high dose restored elevated glutathione level. These biochemical results were clearly supported by the histopathological examination of the isolated heart and aorta. A UHPLC-Orbitrap-HRMS study was represented by a detailed metabolic profile of leaves and flowers of C. ignea A. DC., where 53 compounds were identified among which flavonoids, fatty acids, and hydrolysable tannins were the major identified classes. This study established scientific evidence for the use of C. ignea A. DC., a member of genus Cuphea as a complementary treatment in the management of hypertension.

18.
Sci Rep ; 12(1): 20168, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36424446

ABSTRACT

Enterococci are a common cause of urinary tract infections. The severity of enterococcal infections is associated with their ability to form biofilms. Morus leaves are known as a natural antibacterial, however, their antibiofilm activity against Enterococcus remains unveiled. This study aimed to evaluate the ability of four polyphenol-rich Morus leaves extracts (Morus nigra, M. rubra, M. macroura, and M. alba) to inhibit biofilm formed by enterococcal clinical isolates in relation to their metabolic profiling. Results revealed that 48% of the isolates formed strong biofilm, 28% formed moderate biofilm, 20% formed weak biofilm, and only 4% did not form a biofilm. The strong biofilm-forming isolates were E. faecalis, and hence were chosen for this study. The antibiofilm activity of the four polyphenol-rich Morus leaves extracts revealed that the M. nigra extract exhibited the highest percentage of biofilm inhibition followed by M. rubra then M. macroura and the least inhibition was detected in M. alba, and these results were in accordance with the phenolic and flavonoid contents of each extract. UPLC-ESI-MS/MS identified 61 polyphenolic compounds in the four extracts. Further, multivariate analysis confirmed clear segregation of M. nigra from the other species suggesting disparity in its metabolome, with accumulation of flavonoids, anthocyanidins, phenolic acids and coumarin derivatives. Quercetin and kaempferol glycosides were found to be positively and significantly correlated to the antibiofilm activity. In conclusion, M. nigra ethanolic extracts showed the highest phenolic content and antibiofilm activity and they could be developed as a complementary treatment for the development of antimicrobial agents.


Subject(s)
Morus , Polyphenols/pharmacology , Enterococcus faecalis , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Flavonoids/pharmacology , Flavonoids/analysis , Phenols/pharmacology , Biofilms
19.
Molecules ; 27(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36235260

ABSTRACT

A crucial target in drug research is magnifying efficacy and decreasing toxicity. Therefore, using natural active constituents as precursors will enhance both safety and biological activities. Despite having many pharmacological activities, caffeic and ferulic acids showed limited clinical usage due to their poor bioavailability and fast elimination. Therefore, semisynthetic compounds from these two acids were prepared and screened as anticancer agents. In this study, CA and FA showed very potent anticancer activity against Caco-2 cells. Consequently, eighteen derivatives were tested against the same cell line. Four potent candidates were selected for determination of the selectivity index, where compound 10 revealed a high safety margin. Compound 10 represented a new scaffold and showed significant cytotoxic activity against Caco-2. Cell-cycle analysis and evaluation of apoptosis showed that derivatives 10, 7, 11, 15 and 14 showed the highest proportion of cells in a late apoptotic stage.


Subject(s)
Antineoplastic Agents , Drug Design , Antineoplastic Agents/pharmacology , Apoptosis , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship
20.
Oxid Med Cell Longev ; 2022: 5628601, 2022.
Article in English | MEDLINE | ID: mdl-36105486

ABSTRACT

Artemisia plants are traditional and ethnopharmacologically used to treat several diseases and in addition in food, spices, and beverages. The genus is widely distributed in all continents except the Antarctica, and traditional medicine has been used as antimalarial, antioxidant, anticancer, antinociceptive, anti-inflammatory, and antiviral agents. This review is aimed at systematizing scientific data on the geographical distribution, chemical composition, and pharmacological and toxicological profiles of the Artemisia genus. Data from the literature on Artemisia plants were taken using electronic databases such as PubMed/MEDLINE, Scopus, and Web of Science. Selected papers for this updated study included data about phytochemicals, preclinical pharmacological experimental studies with molecular mechanisms included, clinical studies, and toxicological and safety data. In addition, ancient texts and books were consulted. The essential oils and phytochemicals of the Artemisia genus have reported important biological activities, among them the artemisinin, a sesquiterpene lactone, with antimalarial activity. Artemisia absinthium L. is one of the most famous Artemisia spp. due to its use in the production of the absinthe drink which is restricted in most countries because of neurotoxicity. The analyzed studies confirmed that Artemisia plants have many traditional and pharmacological applications. However, scientific data are limited to clinical and toxicological research. Therefore, further research is needed on these aspects to understand the full therapeutic potential and molecular pharmacological mechanisms of this medicinal species.


Subject(s)
Antimalarials , Artemisia , Oils, Volatile , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisia/chemistry , Medicine, Traditional , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...