Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36556742

ABSTRACT

One specific group of materials with excellent application potential are powder-compacted soft magnetic materials. These materials have been intensively studied by materials scientists to improve their magnetic properties. This work describes the influence of mechanical smoothing applied to Ni80Fe15Mo5 (wt.%) alloy particle surfaces before the process of compaction. The soft magnetic properties of compacted powders prepared from smoothed and non-smoothed particles were investigated using the following measurements: coercive field, permeability, excess loss, and Barkhausen noise analysis. We found that compactions prepared with smoothed powder particles exhibit a lower value of coercivity (4.80 A/m), higher initial (10,850) and maximum relative permeability (27,700), and low-frequency core losses (1.54 J/m3) in comparison with compactions prepared with non-smoothed particles.

2.
BMC Struct Biol ; 12: 12, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22657106

ABSTRACT

BACKGROUND: Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in Dictyostelium discoideum, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an α- and ß-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a "cap" by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles. RESULTS: To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32=ß- and 34=α-subunit) from the cellular slime mold Dictyostelium at 2.2 Å resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible ß-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the α-subunit. In the α-subunit we observed a bending motion of the ß-sheet region located opposite to the position of the C-terminal ß-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the ß-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ). CONCLUSIONS: The structure of Cap32/34 from Dictyostelium discoideum allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the α-subunit, a loop region in the ß-subunit, and the surface of the α-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.


Subject(s)
Actin Capping Proteins/chemistry , Conserved Sequence , Cytoplasm/metabolism , Dictyostelium/chemistry , Microfilament Proteins/chemistry , Muscles/metabolism , Protozoan Proteins/chemistry , Amino Acid Sequence , Animals , Binding Sites , CapZ Actin Capping Protein/chemistry , Chickens , Crystallography, X-Ray , Lipids , Models, Molecular , Molecular Sequence Data , Organ Specificity , Protein Binding , Protein Structure, Secondary , Protein Subunits/chemistry , Protein Subunits/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...