Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1324817, 2024.
Article in English | MEDLINE | ID: mdl-38313805

ABSTRACT

Incorporating the centromere-specific histone H3 protein CENH3 into the centromeric nucleosomes is indispensable for accurate centromere function and balanced chromosome segregation in most eukaryotes, including higher plants. In the cell nuclei of interspecific hybrids, divergent centromeric DNAs cohabit and lead the corresponding parental chromosomes through the mitotic and meiotic cell divisions. Depending on the transmission of the parental chromosomes carrying the CENH3-encoding genes, CENH3 proteins from one or both parents may be present in these hybrids. The incorporation of parental CENH3 proteins into the divergent centromeres and their role in the chromosome elimination process in interspecific hybrids is still poorly understood. Here, we produced wheat × barley F1 hybrids that carried different combinations of barley chromosomes with genes encoding for either one (αCENH3) or both barley CENH3 protein variants (α- and ßCENH3). We generated specific antibodies distinguishing between the wheat CENH3 proteins and barley αCENH3 and applied them together with FISH probes to detect the precise pattern of parental CENH3 deposition into the wheat and barley centromeric nucleosomes. Analysis of somatic and meiotic nuclei of the wheat × barley hybrids revealed the plasticity of the maternal (wheat) CENH3 proteins to become incorporated into the paternal (barley) centromeric nucleosomes. However, no evidence for paternal CENH3 plasticity was detected in this study. The significance of the unilateral centromere plasticity and possible patterns of CENH3 incorporation into centromeres in interspecific hybrids are discussed.

2.
Plants (Basel) ; 12(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38005804

ABSTRACT

This study aimed to investigate the combined effect of high temperatures 10 °C above the optimum and water withholding during microgametogenesis on vegetative processes and determine the response of winter barley genotypes with contrasting tolerance. For this purpose, two barley varieties were analyzed to compare the effect of heat and drought co-stress on their phenology, morpho-anatomy, physiological and biochemical responses and yield constituents. Genotypic variation was observed in response to heat and drought co-stress, which was attributed to differences in anatomy, ultrastructure and physiological and metabolic processes. The co-stress-induced reduction in relative water content, total soluble protein and carbohydrate contents, photosynthetic pigment contents and photosynthetic efficiency of the sensitive Spinner variety was significantly greater than the tolerant Lambada genotype. Based on these observations, it has been concluded that the heat-and-drought stress-tolerance of the Lambada variety is related to the lower initial chlorophyll content of the leaves, the relative resistance of photosynthetic pigments towards stress-triggered degradation, retained photosynthetic parameters and better-preserved leaf ultrastructure. Understanding the key factors underlying heat and drought co-stress tolerance in barley may enable breeders to create barley varieties with improved yield stability under a changing climate.

3.
Gene Ther ; 30(5): 443-454, 2023 05.
Article in English | MEDLINE | ID: mdl-36450833

ABSTRACT

CRISPR-based gene editing technology represents a promising approach to deliver therapies for inherited disorders, including amyotrophic lateral sclerosis (ALS). Toxic gain-of-function superoxide dismutase 1 (SOD1) mutations are responsible for ~20% of familial ALS cases. Thus, current clinical strategies to treat SOD1-ALS are designed to lower SOD1 levels. Here, we utilized AAV-PHP.B variants to deliver CRISPR-Cas9 guide RNAs designed to disrupt the human SOD1 (huSOD1) transgene in SOD1G93A mice. A one-time intracerebroventricular injection of AAV.PHP.B-huSOD1-sgRNA into neonatal H11Cas9 SOD1G93A mice caused robust and sustained mutant huSOD1 protein reduction in the cortex and spinal cord, and restored motor function. Neonatal treatment also reduced spinal motor neuron loss, denervation at neuromuscular junction (NMJ) and muscle atrophy, diminished axonal damage and preserved compound muscle action potential throughout the lifespan of treated mice. SOD1G93A treated mice achieved significant disease-free survival, extending lifespan by more than 110 days. Importantly, a one-time intrathecal or intravenous injection of AAV.PHP.eB-huSOD1-sgRNA in adult H11Cas9 SOD1G93A mice, immediately before symptom onset, also extended lifespan by at least 170 days. We observed substantial protection against disease progression, demonstrating the utility of our CRISPR editing preclinical approach for target evaluation. Our approach uncovered key parameters (e.g., AAV capsid, Cas9 expression) that resulted in improved efficacy compared to similar approaches and can also serve to accelerate drug target validation.


Subject(s)
Amyotrophic Lateral Sclerosis , Mice , Humans , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Superoxide Dismutase-1/genetics , Gene Editing , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Mice, Transgenic , Disease Models, Animal
4.
Front Plant Sci ; 14: 1314021, 2023.
Article in English | MEDLINE | ID: mdl-38259921

ABSTRACT

The significance of heat stress in agriculture is ever-increasing with the progress of global climate changes. Due to a negative effect on the yield of staple crops, including wheat, the impairment of plant reproductive development triggered by high ambient temperature became a restraint in food production. Although the heat sensitivity of male meiosis and the following gamete development in wheat has long been recognized, a detailed structural characterization combined with a comprehensive gene expression analysis has not been done about this phenomenon. We demonstrate here that heat stress severely alters the cytoskeletal configuration, triggers the failure of meiotic division in wheat. Moreover, it changes the expression of genes related to gamete development in male meiocytes and the tapetum layer in a genotype-dependent manner. 'Ellvis', a heat-tolerant winter wheat cultivar, showed high spikelet fertility rate and only scarce structural aberrations upon exposure to high temperature. In addition, heat shock genes and genes involved in scavenging reactive oxygen species were significantly upregulated in 'Ellvis', and the expression of meiosis-specific and major developmental genes showed high stability in this cultivar. In the heat-sensitive 'Mv 17-09', however, genes participating in cytoskeletal fiber nucleation, the spindle assembly checkpoint genes, and tapetum-specific developmental regulators were downregulated. These alterations may be related to the decreased cytoskeleton content, frequent micronuclei formation, and the erroneous persistence of the tapetum layer observed in the sensitive genotype. Our results suggest that understanding the heat-sensitive regulation of these gene functions would be an essential contribution to the development of new, heat-tolerant cultivars.

5.
Virus Res ; 319: 198879, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-35882265

ABSTRACT

Cucumber mosaic virus (CMV) is one of the most devastating plant viruses, with more than 1,200 species of host plants. The host range and economic importance of peanut stunt virus (PSV) are mostly limited to legumes, despite the similar taxonomy and genome structure with CMV. Since no data are available on the background of the limited host range of PSV, RNA 3 recombinant and reassortant viruses were generated (C12P3, P12C3, C12CP3, C12PC3, C12PΔC3) to study their infection phenotype on a common host (Nicotiana benthamiana) and on a selective host (Capsicum annuum cv. Brody). The PSV movement protein (MP) was not able to function with the coat protein (CP) of CMV unless the C-terminal 42 amino acids were deleted from the PSV MP. As a result of the inoculation experiments, MP was considered the protein influencing symptom phenotypes on N. benthamiana and responsible for the host range difference on the pepper. Since plasmodesmata (PD) localization of viral MPs is essential for cell-to-cell movement, subcellular localization of GFP-tagged MPs (CMV-MP-eGFP, PSV-MP-eGFP) was observed. In the case of CMV-MP-eGFP, clear colocalization with PD was detected in both hosts, but PSV-MP-eGFP was not tightly connected to the PD in N. benthamiana and barely localized to the PD in C. annuum epidermal cells. Measuring Pearson correlation coefficients (PCCs) also supported the visual observation.


Subject(s)
Capsicum , Cucumovirus , Cytomegalovirus Infections , Cucumovirus/genetics , Cucumovirus/metabolism , Plant Viral Movement Proteins/genetics , Plant Viral Movement Proteins/metabolism , Nicotiana
6.
Front Plant Sci ; 13: 1065419, 2022.
Article in English | MEDLINE | ID: mdl-36733596

ABSTRACT

Ralstonia solanacearum (Rs), the causal agent of bacterial wilt disease in an unusually wide range of host plants, including potato (Solanum tuberosum), is one of the most destructive phytopathogens that seriously reduces crop yields worldwide. Identification of defence mechanisms underlying bacterial wilt resistance is a prerequisite for biotechnological approaches to resistance breeding. Resistance to Rs has been reported only in a few potato landraces and cultivars. Our in vitro inoculation bioassays confirmed that the cultivars 'Calalo Gaspar' (CG) and 'Cruza 148' (CR) are resistant to Rs infection. Comparative transcriptome analyses of CG and CR roots, as well as of the roots of an Rs-susceptible cultivar, 'Désirée' (DES), were carried out two days after Rs infection, in parallel with their respective noninfected controls. In CR and DES, the upregulation of chitin interactions and cell wall-related genes was detected. The phenylpropanoid biosynthesis and glutathione metabolism pathways were induced only in CR, as confirmed by high levels of lignification over the whole stele in CR roots six days after Rs infection. At the same time, Rs infection greatly increased the concentrations of chlorogenic acid and quercetin derivatives in CG roots as it was detected using ultra-performance liquid chromatography - tandem mass spectrometry. Characteristic increases in the expression of MAP kinase signalling pathway genes and in the concentrations of jasmonic, salicylic, abscisic and indoleacetic acid were measured in DES roots. These results indicate different Rs defence mechanisms in the two resistant potato cultivars and a different response to Rs infection in the susceptible cultivar.

7.
Plant J ; 107(6): 1585-1602, 2021 09.
Article in English | MEDLINE | ID: mdl-34171148

ABSTRACT

The reciprocal exchange of genetic information between homologous chromosomes during meiotic recombination is essential to secure balanced chromosome segregation and to promote genetic diversity. The chromosomal position and frequency of reciprocal genetic exchange shapes the efficiency of breeding programmes and influences crop improvement under a changing climate. In large genome cereals, such as wheat and barley, crossovers are consistently restricted to subtelomeric chromosomal regions, thus preventing favourable allele combinations being formed within a considerable proportion of the genome, including interstitial and pericentromeric chromatin. Understanding the key elements driving crossover designation is therefore essential to broaden the regions available for crossovers. Here, we followed early meiotic chromatin dynamism in cereals through the visualisation of a homologous barley chromosome arm pair stably transferred into the wheat genetic background. By capturing the dynamics of a single chromosome arm at the same time as detecting the undergoing events of meiotic recombination and synapsis, we showed that subtelomeric chromatin of homologues synchronously transitions to an open chromatin structure during recombination initiation. By contrast, pericentromeric and interstitial regions preserved their closed chromatin organisation and become unpackaged only later, concomitant with initiation of recombinatorial repair and the initial assembly of the synaptonemal complex. Our results raise the possibility that the closed pericentromeric chromatin structure in cereals may influence the fate decision during recombination initiation, as well as the spatial development of synapsis, and may also explain the suppression of crossover events in the proximity of the centromeres.


Subject(s)
Chromatin/genetics , Chromosome Pairing , Hordeum/genetics , Recombination, Genetic/genetics , Triticum/genetics , Centromere/genetics , Centromere/metabolism , Chromatin/metabolism , Chromosomes, Plant , DNA Breaks, Double-Stranded , Edible Grain/genetics , Genome, Plant , In Situ Hybridization/methods , Meiosis , Meiotic Prophase I , Microscopy, Confocal
8.
Viruses ; 13(2)2021 01 31.
Article in English | MEDLINE | ID: mdl-33572676

ABSTRACT

Cucumber mosaic virus (CMV, Cucumovirus, Bromoviridae) is an economically significant virus infecting important horticultural and field crops. Current knowledge regarding the specific functions of its movement protein (MP) is still incomplete. In the present study, potential post-translational modification sites of its MP were assayed with mutant viruses: MP/S28A, MP/S28D, MP/S120A and MP/S120D. Ser28 was identified as an important factor in viral pathogenicity on Nicotiana tabacum cv. Xanthi, Cucumis sativus and Chenopodium murale. The subcellular localization of GFP-tagged movement proteins was determined with confocal laser-scanning microscopy. The wild type movement protein fused to green fluorescent protein (GFP) (MP-eGFP) greatly colocalized with callose at plasmodesmata, while MP/S28A-eGFP and MP/S28D-eGFP were detected as punctate spots along the cell membrane without callose colocalization. These results underline the importance of phosphorylatable amino acids in symptom formation and provide data regarding the essential factors for plasmodesmata localization of CMV MP.


Subject(s)
Cucumovirus/metabolism , Nicotiana/virology , Plant Diseases/virology , Plant Viral Movement Proteins/chemistry , Plant Viral Movement Proteins/metabolism , Plasmodesmata/virology , Amino Acid Motifs , Cucumovirus/chemistry , Cucumovirus/genetics , Plant Viral Movement Proteins/genetics
9.
Gene Ther ; 28(10-11): 646-658, 2021 11.
Article in English | MEDLINE | ID: mdl-33558692

ABSTRACT

CRISPR-Cas systems have emerged as a powerful tool to generate genetic models for studying normal and diseased central nervous system (CNS). Targeted gene disruption at specific loci has been demonstrated successfully in non-dividing neurons. Despite its simplicity, high specificity and low cost, the efficiency of CRISPR-mediated knockout in vivo can be substantially impacted by many parameters. Here, we used CRISPR-Cas9 to disrupt the neuronal-specific gene, NeuN, and optimized key parameters to achieve effective gene knockout broadly in the CNS in postnatal mice. Three cell lines and two primary neuron cultures were used to validate the disruption of NeuN by single-guide RNAs (sgRNA) harboring distinct spacers and scaffold sequences. This triage identified an optimal sgRNA design with the highest NeuN disruption in in vitro and in vivo systems. To enhance CRISPR efficiency, AAV-PHP.B, a vector with superior neuronal transduction, was used to deliver this sgRNA in Cas9 mice via neonatal intracerebroventricular (ICV) injection. This approach resulted in 99.4% biallelic indels rate in the transduced cells, leading to greater than 70% reduction of total NeuN proteins in the cortex, hippocampus and spinal cord. This work contributes to the optimization of CRISPR-mediated knockout and will be beneficial for fundamental and preclinical research.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, Kinetoplastida , Animals , Central Nervous System , Gene Editing/methods , Gene Knockout Techniques , Mice , Neurons/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
10.
Popul Health Manag ; 24(1): 35-45, 2021 02.
Article in English | MEDLINE | ID: mdl-32882160

ABSTRACT

In times of epidemics and humanitarian crises, it is essential to translate scientific findings into digestible information for government policy makers who have a short time to make critical decisions. To predict how far and fast the disease would spread across Hungary and to support the epidemiological decision-making process, a multidisciplinary research team performed a large amount of scientific data analysis and mathematical and socioeconomic modeling of the COVID-19 epidemic in Hungary, including modeling the medical resources and capacities, the regional differences, gross domestic product loss, the impact of closing and reopening elementary schools, and the optimal nationwide screening strategy for various virus-spreading scenarios and R metrics. KETLAK prepared 2 extensive reports on the problems identified and suggested solutions, and presented these directly to the National Epidemiological Policy-Making Body. The findings provided crucial data for the government to address critical measures regarding health care capacity, decide on restriction maintenance, change the actual testing strategy, and take regional economic, social, and health differences into account. Hungary managed the first part of the COVID-19 pandemic with low mortality rate. In times of epidemics, the formation of multidisciplinary research groups is essential for policy makers. The establishment, research activity, and participation in decision-making of these groups, such as KETLAK, can serve as a model for other countries, researchers, and policy makers not only in managing the challenges of COVID-19, but in future pandemics as well.


Subject(s)
COVID-19 , Federal Government , Pandemics/prevention & control , Policy Making , Translational Research, Biomedical , COVID-19/diagnosis , COVID-19/mortality , COVID-19/prevention & control , Gross Domestic Product , Health Resources , Hospital Bed Capacity , Humans , Hungary , SARS-CoV-2
11.
Nat Commun ; 11(1): 635, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005814

ABSTRACT

Multipotent Nkx2-1-positive lung epithelial primordial progenitors of the foregut endoderm are thought to be the developmental precursors to all adult lung epithelial lineages. However, little is known about the global transcriptomic programs or gene networks that regulate these gateway progenitors in vivo. Here we use bulk RNA-sequencing to describe the unique genetic program of in vivo murine lung primordial progenitors and computationally identify signaling pathways, such as Wnt and Tgf-ß superfamily pathways, that are involved in their cell-fate determination from pre-specified embryonic foregut. We integrate this information in computational models to generate in vitro engineered lung primordial progenitors from mouse pluripotent stem cells, improving the fidelity of the resulting cells through unbiased, easy-to-interpret similarity scores and modulation of cell culture conditions, including substratum elastic modulus and extracellular matrix composition. The methodology proposed here can have wide applicability to the in vitro derivation of bona fide tissue progenitors of all germ layers.


Subject(s)
Epithelial Cells/cytology , Lung/cytology , Mice/genetics , Pluripotent Stem Cells/cytology , Animals , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Female , Germ Layers/embryology , Germ Layers/metabolism , Lung/embryology , Lung/metabolism , Male , Mice/embryology , Mice/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Pluripotent Stem Cells/metabolism , Signal Transduction , Thyroid Nuclear Factor 1/genetics , Thyroid Nuclear Factor 1/metabolism , Transcriptome , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
12.
Front Plant Sci ; 10: 244, 2019.
Article in English | MEDLINE | ID: mdl-30899270

ABSTRACT

As a consequence of climate change, unpredictable extremely hot and dry periods are becoming more frequent during the early stages of reproductive development in wheat (Triticum aestivum L.). Pollen sterility has long been known as a major determinant of fertility loss under high temperature and water scarcity, but it will be demonstrated here that this is not the exclusive cause and that damage to female reproductive organs also contributes to losses of fertility and production. Changes in the phenology, morphology, and anatomy of female reproductive cells and organs, in the ROS and RNS generation of stigmatic papilla cells, and in fertility and yield components in response to simultaneous high temperature and drought at gametogenesis were studied in two wheat genotypes with contrasting stress responses. The combination of high temperature (32/24°C) and total water withdrawal for 5 days at gametogenesis altered the phenology of the plants, reduced pollen viability, modified the morphology and the anatomy of the pistils, enhanced the generation of ROS and RNS, intensified lipid peroxidation and decreased the NO production of stigmatic papilla cells, all leading to reduced fertility and to production loss in the sensitive genotype, depending on the position of the floret on the spike. Reduced functionality of female and male reproductive parts accounted for 34% and 66%, respectively, of the total generative cell- and organ-triggered fertility loss.

13.
Front Plant Sci ; 9: 1193, 2018.
Article in English | MEDLINE | ID: mdl-30154816

ABSTRACT

ImmunoFISH is a method combining immunolabelling (IL) with fluorescent in situ hybridisation (FISH) to simultaneously detect the nuclear distribution of proteins and specific DNA sequences within chromosomes. This approach is particularly important when analysing meiotic cell division where morphogenesis of individual proteins follows stage-specific changes and is accompanied by a noticeable chromatin dynamism. The method presented here is simple and provides reliable results of high quality signal, low background staining and can be completed within 2 days following preparation. Conventional widefield epifluorescent or laser scanning microscopy can be used for high resolution and three-dimensional analysis. Fixation and preparation techniques were optimised to best preserve nuclear morphology and protein epitopes without the need for any antigen retrieval. Preparation of plant material involved short cross-linking fixation of meiotic tissues with paraformaldehyde (PFA) followed by enzyme digestion and slide-mounting. In order to avoid rapid sample degradation typical of shortly fixed plant materials, and to be able to perform IL later, slides were snap-frozen and stored at -80°C. Ultra-freezing produced a remarkable degree of structural preservation for up to 12 months, whereby sample quality was similar to that of fresh material. Harsh chemicals and sample dehydration were avoided throughout the procedure and permeability was ensured by a 0.1-0.3% detergent treatment. The ImmunoFISH method was developed specifically for studying meiosis in Triticeae, but should also be applicable to other grass and plant species.

14.
Virus Res ; 251: 47-55, 2018 06 02.
Article in English | MEDLINE | ID: mdl-29730309

ABSTRACT

A previous study showed that a single amino acid difference in the cucumber mosaic virus (CMV) capsid protein (CP) elicits unusual symptoms. The wild-type strain (CMV-R) induces green mosaic symptoms and malformation while the mutant strain (CMV-R3E79R) causes chlorotic lesions on inoculated leaves and strong stunting with necrosis on systemic leaves. Virion preparations of CMV-R and CMV-R3E79R were partially purified from Nicotiana clevelandii A. Gray and analysed by two-dimensional gel electrophoresis. Their separated protein patterns showed remarkable differences at the 50-75 kDa range, both in numbers and intensity of spots, with more protein spots for the mutant CMV. Mass spectrometry analysis demonstrated that the virion preparations contained host proteins identified as ATP synthase alpha and beta subunits as well as small and large Rubisco subunits, respectively. Virus overlay protein binding assay (VOPBA), immunogold electron microscopy and modified ELISA experiments were used to prove the direct interaction between the virus particle and the N. clevelandii ATP synthase F1 motor complex. Protein-protein docking study revealed that the electrostatic change in the mutant CMV can introduce stronger interactions with ATP synthase F1 complex. Based on our findings we suggest that the mutation present in the CP can have a direct effect on the long-distance movement and systemic symptoms. In molecular view the mutant CMV virion can lethally block the rotation of the ATP synthase F1 motor complex which may lead to cell apoptosis, and finally to plant death.


Subject(s)
Capsid Proteins/metabolism , Cucumovirus/physiology , Host-Pathogen Interactions , Nicotiana/virology , Point Mutation , Proton-Translocating ATPases/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/isolation & purification , Cucumovirus/genetics , Electrophoresis, Gel, Two-Dimensional , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Mass Spectrometry , Microscopy, Immunoelectron , Molecular Docking Simulation , Molecular Weight , Protein Binding , Ribulose-Bisphosphate Carboxylase/metabolism
15.
Front Plant Sci ; 8: 1641, 2017.
Article in English | MEDLINE | ID: mdl-28970845

ABSTRACT

Strigolactones (SLs) and related butenolides, originally identified as active seed germination stimulants of parasitic weeds, play important roles in many aspects of plant development. Two members of the D14 α/ß hydrolase protein family, DWARF14 (D14) and KARRIKIN INSENSITIVE2 (KAI2) are essential for SL/butenolide signaling. The third member of the family in Arabidopsis, DWARF 14-LIKE2 (DLK2) is structurally very similar to D14 and KAI2, but its function is unknown. We demonstrated that DLK2 does not bind nor hydrolyze natural (+)5-deoxystrigol [(+)5DS], and weakly hydrolyzes non-natural strigolactone (-)5DS. A detailed genetic analysis revealed that DLK2 does not affect SL responses and can regulate seedling photomorphogenesis. DLK2 is upregulated in the dark dependent upon KAI2 and PHYTOCHROME INTERACTING FACTORS (PIFs), indicating that DLK2 might function in light signaling pathways. In addition, unlike its paralog proteins, DLK2 is not subject to rac-GR24-induced degradation, suggesting that DLK2 acts independently of MORE AXILLARY GROWTH2 (MAX2); however, regulation of DLK2 transcription is mostly accomplished through MAX2. In conclusion, these data suggest that DLK2 represents a divergent member of the DWARF14 family.

16.
Phytopathology ; 106(11): 1326-1334, 2016 11.
Article in English | MEDLINE | ID: mdl-27327577

ABSTRACT

A new powdery mildew resistance gene designated as PmHo was identified in 'Mv Hombár' winter wheat, bred in Martonvásár, Hungary. It has exhibited a high level of resistance over the last two decades. Genetic mapping of recombinant inbred lines derived from the cross 'Ukrainka'/Mv Hombár located this gene on chromosome 2AL. The segregation ratio and consistent effect in all environments indicated that PmHo is a major dominant powdery mildew resistance gene. The race-specific nature of resistance in Mv Hombár was shown by the emergence of a single virulent pathotype designated as 51-Ho. This pathotype was, to some extent, able to infect Mv Hombár, developing visible symptoms with sporulating colonies. Microscopic studies revealed that, in incompatible interactions, posthaustorial hypersensitivity reaction was the most prevalent but not exclusive plant defense response in Mv Hombár, and fungal growth was mostly arrested during haustorium formation or in the early stages of colony development. The delayed fungal development of the virulent pathotype 51-Ho may be explained by additional effects of other loci that were also involved in the powdery mildew resistance of Mv Hombár.


Subject(s)
Ascomycota/physiology , Host-Pathogen Interactions , Plant Diseases/immunology , Plant Proteins/genetics , Triticum/genetics , Breeding , Chromosome Mapping , DNA, Plant/genetics , Disease Resistance/genetics , Genetic Linkage , Microsatellite Repeats/genetics , Phenotype , Plant Diseases/microbiology , Plant Proteins/metabolism , Quantitative Trait Loci/genetics , Triticum/immunology , Triticum/microbiology
17.
Phytopathology ; 105(6): 797-804, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25710203

ABSTRACT

Although Blumeria graminis is an intensively studied pathogen, an important part of its life cycle (namely, the way ascospores initiate primary infections on cereal leaves) has not yet been explored in detail. This study reports, for the first time, the direct observation of this process in B. graminis f. sp. tritici using light and confocal laser-scanning microscopy. All the germinated ascospores produced a single germ tube type both in vitro and on host plant surfaces; therefore, the ascosporic and conidial germination patterns are markedly different in this fungus, in contrast to other powdery mildews. Germinated ascospores penetrated the epidermal cells of wheat leaves and produced haustoria as known in the case of conidial infections. This work confirmed earlier studies reporting that B. graminis chasmothecia collected from the field do not contain mature ascospores, only asci filled with protoplasm; ascospore development is induced by moist conditions and is a fast process compared with other powdery mildews. Although ascosporic infections are frequent in B. graminis f. sp. tritici in the field, as shown by this study and other works as well, a recent analysis of the genomes of four isolates revealed the signs of clonal or near-clonal reproduction. Therefore, chasmothecia and ascospores are probably more important as oversummering structures than genetic recombination factors in the life cycle of this pathogen.


Subject(s)
Ascomycota/cytology , Plant Diseases/microbiology , Spores, Fungal/cytology , Triticum/microbiology , Ascomycota/genetics , Ascomycota/physiology , Edible Grain/microbiology , Plant Leaves/microbiology , Spores, Fungal/genetics , Spores, Fungal/physiology
18.
J Plant Physiol ; 171(14): 1256-66, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25014261

ABSTRACT

Leaf micromorphological traits and some physiological parameters with potential relevance to drought tolerance mechanisms were investigated in four selected winter wheat varieties. Plants were subjected to two cycles of drought treatment at anthesis. Yield components confirmed contrasting drought-sensitive and -tolerant behavior of the genotypes. Drought tolerance was associated with small flag leaf surfaces and less frequent occurrence of stomata. Substantial variation of leaf cuticular thickness was found among the cultivars. Thin cuticle coincided with drought sensitivity and correlated with a high rate of dark-adapted water loss from leaves. Unlike in Arabidopsis, thickening of the cuticular matrix in response to water deprivation did not occur. Water stress induced epicuticular wax crystal depositions preferentially on the abaxial leaf surfaces. According to microscopy and electrolyte leakage measurements from leaf tissues, membrane integrity was lost earlier or to a higher extent in sensitive than in tolerant genotypes. Cellular damage and a decline of relative water content of leaves in sensitive cultivars became distinctive during the second cycle of water deprivation. Our results indicate strong variation of traits with potential contribution to the complex phenotype of drought tolerance in wheat genotypes. The maintained membrane integrity and relative water content values during repeated water limited periods were found to correlate with drought tolerance in the selection of cultivars investigated.


Subject(s)
Genotype , Plant Leaves/physiology , Plant Leaves/ultrastructure , Stress, Physiological , Triticum/physiology , Triticum/ultrastructure , Droughts , Flowers/growth & development , Flowers/physiology , Flowers/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Plant Epidermis/physiology , Plant Epidermis/ultrastructure , Plant Leaves/growth & development , Plant Stomata/physiology , Plant Stomata/ultrastructure , Seeds/growth & development , Seeds/physiology , Seeds/ultrastructure , Triticum/genetics , Triticum/growth & development , Water , Water-Electrolyte Balance
19.
Am J Respir Cell Mol Biol ; 47(1): 11-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22323363

ABSTRACT

Lung endothelium is believed to be a quiescent tissue with the potential to exhibit rapid and effective repair after injury. Endothelial progenitor cells derived from the bone marrow have been proposed as one source of new endothelial cells that may directly contribute to pulmonary endothelial cell homeostasis and repair. Here we use bone marrow transplantation models, using purified hematopoietic stem cells (HSCs) or unfractionated whole marrow, to assess engraftment of cells in the endothelium of a variety of tissues. We find scant evidence for any contribution of bone marrow-derived cells to the pulmonary endothelium in the steady state or after recovery from hyperoxia-induced endothelial injury. Although a rare population of CD45-/CD31+/VECadherin+ bone marrow-derived cells, originating from HSCs, can be found in lung tissue after transplantation, these cells are not readily found in anatomic locations that define the pulmonary endothelium. Moreover, by tracking transplanted bone marrow cells obtained from donor transgenic mice containing endothelial lineage-selective reporters (Tie2-GFP), no contribution of bone marrow-derived cells to the adult lung, liver, pancreas, heart, and kidney endothelium can be detected, even after prolonged follow-up periods of 11 months or after recovery from hyperoxic pulmonary endothelial injury. Our findings argue against any significant engraftment of bone marrow-derived cells in the pulmonary vascular endothelium.


Subject(s)
Bone Marrow Cells/physiology , Endothelium, Vascular/pathology , Hematopoietic Stem Cells/physiology , Lung/pathology , Respiratory Mucosa/pathology , Animals , Bone Marrow Transplantation , Cadherins/biosynthesis , Cell Lineage , Endothelial Cells/physiology , Endothelium, Vascular/metabolism , Green Fluorescent Proteins/genetics , Hematopoietic Stem Cell Transplantation , Hyperoxia/pathology , Hypoxia/pathology , Kidney/metabolism , Leukocyte Common Antigens/biosynthesis , Liver/cytology , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocardium/cytology , Pancreas/cytology , Pancreas/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis
20.
Nature ; 470(7334): 359-65, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21307849

ABSTRACT

Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1ß, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1ß promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere-p53-PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.


Subject(s)
Mitochondria/metabolism , Mitochondria/pathology , Telomere/metabolism , Telomere/pathology , Adenosine Triphosphate/biosynthesis , Aging/metabolism , Aging/pathology , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cell Proliferation , DNA, Mitochondrial/analysis , Doxorubicin/toxicity , Gluconeogenesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Liver/cytology , Liver/metabolism , Mice , Myocardium/cytology , Myocardium/metabolism , RNA/genetics , Reactive Oxygen Species/metabolism , Telomerase/deficiency , Telomerase/genetics , Telomere/enzymology , Telomere/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...