Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 12(9)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37760073

ABSTRACT

Soluble Aß1-42 oligomers (AßO) are formed in the early stages of Alzheimer's disease (AD) and were previously shown to trigger enhanced Ca2+ levels and mitochondrial dysfunction via the activation of N-methyl-D-aspartate receptors (NMDAR). Src kinase is a ubiquitous redox-sensitive non-receptor tyrosine kinase involved in the regulation of several cellular processes, which was demonstrated to have a reciprocal interaction towards NMDAR activation. However, little is known about the early-stage mechanisms associated with AßO-induced neurodysfunction involving Src. Thus, in this work, we analysed the influence of brief exposure to oligomeric Aß1-42 on Src activation and related mechanisms involving mitochondria and redox changes in mature primary rat hippocampal neurons. Data show that brief exposure to AßO induce H2O2-dependent Src activation involving different cellular events, including NMDAR activation and mediated intracellular Ca2+ rise, enhanced cytosolic and subsequent mitochondrial H2O2 levels, accompanied by mild mitochondrial fragmentation. Interestingly, these effects were prevented by Src inhibition, suggesting a feedforward modulation. The current study supports a relevant role for Src kinase activation in promoting the loss of postsynaptic glutamatergic synapse homeostasis involving cytosolic and mitochondrial ROS generation after brief exposure to AßO. Therefore, restoring Src activity can constitute a protective strategy for mitochondria and related hippocampal glutamatergic synapses.

2.
Antioxid Redox Signal ; 38(1-3): 95-114, 2023 01.
Article in English | MEDLINE | ID: mdl-35651273

ABSTRACT

Aims: Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder with no effective therapies. Mutant huntingtin protein (mHTT), the main HD proteinaceous hallmark, has been linked to reactive oxygen species (ROS) formation and mitochondrial dysfunction, among other pathological mechanisms. Importantly, Src-related kinases, c-Src and Fyn, are activated by ROS and regulate mitochondrial activity. However, c-Src/Fyn involvement in HD is largely unexplored. Thus, in this study, we aimed at exploring changes in Src/Fyn proteins in HD models and their role in defining altered mitochondrial function and dynamics and redox regulation. Results: We show, for the first time, that c-Src/Fyn phosphorylation/activation and proteins levels are decreased in several human and mouse HD models mainly due to autophagy degradation, concomitantly with mHtt-expressing cells showing enhanced TFEB-mediated autophagy induction and autophagy flux. c-Src/Fyn co-localization with mitochondria is also reduced. Importantly, the expression of constitutive active c-Src/Fyn to restore active Src kinase family (SKF) levels improves mitochondrial morphology and function, namely through improved mitochondrial transmembrane potential, mitochondrial basal respiration, and ATP production, but it did not affect mitophagy. In addition, constitutive active c-Src/Fyn expression diminishes the levels of reactive species in cells expressing mHTT. Innovation: This work supports a relevant role for c-Src/Fyn proteins in controlling mitochondrial function and redox regulation in HD, revealing a potential HD therapeutic target. Conclusion: c-Src/Fyn restoration in HD improves mitochondrial morphology and function, precluding the rise in oxidant species and cell death. Antioxid. Redox Signal. 38, 95-114.


Subject(s)
Huntington Disease , Animals , Humans , Mice , Disease Models, Animal , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/therapeutic use , Huntington Disease/drug therapy , Mitochondria/metabolism , Phosphorylation , Reactive Oxygen Species/metabolism , CSK Tyrosine-Protein Kinase/metabolism
3.
Cells ; 11(19)2022 09 29.
Article in English | MEDLINE | ID: mdl-36231023

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) are important postsynaptic receptors that contribute to normal synaptic function and cell survival; however, when overactivated, as in Huntington's disease (HD), NMDARs cause excitotoxicity. HD-affected striatal neurons show altered NMDAR currents and augmented ratio of surface to internal GluN2B-containing NMDARs, with augmented accumulation at extrasynaptic sites. Fyn protein is a member of the Src kinase family (SKF) with an important role in NMDARs phosphorylation and synaptic localization and function; recently, we demonstrated that Fyn is reduced in several HD models. Thus, in this study, we aimed to explore the impact of HD-mediated altered Fyn levels at post-synaptic density (PSD), and their role in distorted NMDARs function and localization, and intracellular neuroprotective pathways in YAC128 mouse primary striatal neurons. We show that reduced synaptic Fyn levels and activity in HD mouse striatal neurons is related to decreased phosphorylation of synaptic GluN2B-composed NMDARs; this occurs concomitantly with augmented extrasynaptic NMDARs activity and currents and reduced cAMP response element-binding protein (CREB) activation, along with induction of cell death pathways. Importantly, expression of a constitutive active form of SKF reestablishes NMDARs localization, phosphorylation, and function at PSD in YAC128 mouse neurons. Enhanced SKF levels and activity also promotes CREB activation and reduces caspase-3 activation in YAC128 mouse striatal neurons. This work supports, for the first time, a relevant role for Fyn protein in PSD modulation, controlling NMDARs synaptic function in HD, and favoring neuroprotective pathways and cell survival. In this respect, Fyn Tyr kinase constitutes an important potential HD therapeutic target directly acting at PSD.


Subject(s)
Huntington Disease , Proto-Oncogene Proteins c-fyn/metabolism , Receptors, N-Methyl-D-Aspartate , Animals , Caspase 3/metabolism , Corpus Striatum/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Huntington Disease/metabolism , Mice , Receptors, N-Methyl-D-Aspartate/metabolism
4.
Ageing Res Rev ; 80: 101667, 2022 09.
Article in English | MEDLINE | ID: mdl-35714855

ABSTRACT

Mitochondria have been largely described as the powerhouse of the cell and recent findings demonstrate that this organelle is fundamental for neurogenesis. The mechanisms underlying neural stem cells (NSCs) maintenance and differentiation are highly regulated by both intrinsic and extrinsic factors. Mitochondrial-mediated switch from glycolysis to oxidative phosphorylation, accompanied by mitochondrial remodeling and dynamics are vital to NSCs fate. Deregulation of mitochondrial proteins, mitochondrial DNA, function, fission/fusion and metabolism underly several neurodegenerative diseases; data show that these impairments are already present in early developmental stages and NSC fate decisions. However, little is known about mitochondrial role in neurogenesis. In this Review, we describe the recent evidence covering mitochondrial role in neurogenesis, its impact in selected neurodegenerative diseases, for which aging is the major risk factor, and the recent advances in stem cell-based therapies that may alleviate neurodegenerative disorders-related neuronal deregulation through improvement of mitochondrial function and dynamics.


Subject(s)
Neural Stem Cells , Neurodegenerative Diseases , Cell Differentiation , Cell Proliferation , Humans , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Neurogenesis/physiology
5.
Biomedicines ; 9(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34829854

ABSTRACT

Macroautophagy, a quality control mechanism, is an evolutionarily conserved pathway of lysosomal degradation of protein aggregates, pathogens, and damaged organelles. As part of its vital homeostatic role, macroautophagy deregulation is associated with various human disorders, including neurodegenerative diseases. There are several lines of evidence that associate protein misfolding and mitochondrial dysfunction in the etiology of Alzheimer's, Parkinson's, and Huntington's diseases. Macroautophagy has been implicated in the degradation of different protein aggregates such as Aß, tau, alpha-synuclein (α-syn), and mutant huntingtin (mHtt) and in the clearance of dysfunctional mitochondria. Taking these into consideration, targeting autophagy might represent an effective therapeutic strategy to eliminate protein aggregates and to improve mitochondrial function in these disorders. The present review describes our current understanding on the role of macroautophagy in neurodegenerative disorders and focuses on possible strategies for its therapeutic modulation.

6.
BMC Biol ; 19(1): 57, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33761951

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS: Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION: We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.


Subject(s)
Endoplasmic Reticulum/drug effects , Luteolin/pharmacology , Mitochondria/drug effects , Neurons/metabolism , Animals , Cell Line, Tumor , Drug Evaluation, Preclinical , Endoplasmic Reticulum/metabolism , High-Throughput Screening Assays , Humans , Mice , Mitochondria/metabolism , Neurons/drug effects , Signal Transduction
7.
Antioxid Redox Signal ; 34(8): 650-673, 2021 03 10.
Article in English | MEDLINE | ID: mdl-32498555

ABSTRACT

Significance: The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Recent Advances: Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Critical Issues: Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Future Directions: Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.


Subject(s)
Huntington Disease/metabolism , Mitochondria/metabolism , Animals , Humans , Huntington Disease/drug therapy , Oxidation-Reduction
8.
Neuroscience ; 454: 116-139, 2021 02 01.
Article in English | MEDLINE | ID: mdl-31887357

ABSTRACT

The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.


Subject(s)
Neurodegenerative Diseases , Synapses , Humans , Neuronal Plasticity , Post-Synaptic Density , Synaptic Transmission
9.
Free Radic Biol Med ; 163: 163-179, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33285261

ABSTRACT

SIRT3 is a major regulator of mitochondrial acetylome. Here we show that SIRT3 is neuroprotective in Huntington's disease (HD), a motor neurodegenerative disorder caused by an abnormal expansion of polyglutamines in the huntingtin protein (HTT). Protein and enzymatic analysis revealed that increased SIRT3 is a signature in several HD models, including human HD brain, which is regulated by oxidative species. While loss of SIRT3 further aggravated the oxidative phenotype, antioxidant treatment regularized SIRT3 levels. SIRT3 overexpression promoted the antioxidant effect in cells expressing mutant HTT, leading to enhanced mitochondrial function and balanced dynamics. Decreased Fis1 and Drp1 accumulation in mitochondria induced by SIRT3 expression favored mitochondrial elongation, while the SIRT3 activator ε-viniferin improved anterograde mitochondrial neurite transport, sustaining cell survival. Notably, SIRT3 fly-ortholog dSirt2 overexpression in HD flies ameliorated neurodegeneration and extended lifespan. These findings provide a link between oxidative stress and mitochondrial dysfunction hypotheses in HD and offer an opportunity for therapeutic development.


Subject(s)
Huntington Disease , Sirtuin 3 , Humans , Huntingtin Protein/genetics , Huntington Disease/drug therapy , Huntington Disease/genetics , Huntington Disease/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Neuroprotection , Oxidative Stress , Sirtuin 3/genetics , Sirtuin 3/metabolism
10.
Ageing Res Rev ; 54: 100942, 2019 09.
Article in English | MEDLINE | ID: mdl-31415806

ABSTRACT

A failure in redox homeostasis is a common hallmark of Alzheimer's Disease (AD) and Parkinson's Disease (PD), two age-dependent neurodegenerative disorders (NDD), causing increased oxidative stress, oxidized/damaged biomolecules, altered neuronal function and consequent cell death. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a redox-regulated transcription factor, results in upregulation of cytoprotective and antioxidant enzymes/proteins, protecting against oxidative stress. Nrf2 regulation is achieved by various proteins and pathways, at both cytoplasmatic and nuclear level; however, the elaborate network of mechanisms involved in Nrf2 regulation may restrain Nrf2 pathway normal activity. Indeed, altered Nrf2 activity is involved in aging and NDD, such as AD and PD. Therefore, understanding the diversity of Nrf2 control mechanisms and regulatory proteins is of high interest, since more effective NDD therapeutics can be identified. In this review, we first introduce Keap1-Nrf2-ARE structure, function and regulation, with a special focus on the several pathways involved in Nrf2 positive and negative modulation, namely p62, PKC, PI3K/Akt/GSK-3ß, NF-kB and p38 MAPK. We then briefly describe the evidences for oxidative stress and Nrf2 pathway deregulation in different stages of NDDs. Finally, we discuss the potential of Nrf2-related pathways as potential therapeutic targets to possibly prevent or slowdown NDD progression.


Subject(s)
Alzheimer Disease/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Parkinson Disease/metabolism , Signal Transduction , Animals , Antioxidant Response Elements , Glycogen Synthase Kinase 3 beta/metabolism , Humans , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases
11.
Biochim Biophys Acta Mol Cell Res ; 1866(4): 686-698, 2019 04.
Article in English | MEDLINE | ID: mdl-30685263

ABSTRACT

Nrf2 is the main transcription factor involved in expression of cell defense enzymes, which is altered in several oxidant-related disorders. Cytosolic Nrf2 activation is modulated through phosphorylation by PKCδ, an enzyme controlled by Src tyrosine kinases. Of relevance, Src family members are involved in numerous cellular processes and regulated by hydrogen peroxide (H2O2). In this study we analysed the activation of cell survival-related signaling proteins, c-Src and Nrf2, and the influence of c-Src kinase on Nrf2 regulation after exposure to H2O2. Acute exposure of HT22 mouse hippocampal neural cells to H2O2 increased c-Src and Nrf2 phosphorylation/activation at Tyr416 and Ser40, respectively. Nrf2 phosphorylation at Ser40, its nuclear accumulation and transcriptional activity involving heme oxygenase-1 (HO-1) expression were dependent on c-Src kinase activation. Moreover, modulation of Nrf2 activity by c-Src occurred through PKCδ phosphorylation at Tyr311. We demonstrate, for the first time, c-Src-mediated regulation of Nrf2 transcriptional activity, via PKCδ activation, following an acute H2O2 stimulus. This work supports that the c-Src/PKCδ/Nrf2 pathway may constitute a novel signaling pathway stimulated by H2O2 and a potential target for the treatment of diseases involving redox deregulation.


Subject(s)
NF-E2-Related Factor 2/metabolism , Protein Kinase C-delta/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Animals , Cell Line , Cell Nucleus/enzymology , Cytoplasm/enzymology , Hippocampus/cytology , Hydrogen Peroxide/pharmacology , Mice , Protein Kinase C-delta/physiology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...