Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 35(4): e2821, 2019 07.
Article in English | MEDLINE | ID: mdl-30985083

ABSTRACT

Perfusion is a cell culture mode that is gaining popularity for the manufacture of monoclonal antibodies and their derivatives. The cell culture media supporting perfusion culture need to support higher cell densities than those used in fed-batch culture. Therefore, when switching from a fed-batch to a perfusion mode, a new medium need to be developed which supports high cell densities, high productivity, and favorable product quality. We have developed a method for deriving perfusion culture media based on existing fed-batch media and feeds. We show that we can obtain culture media that successfully support perfusion cultures in a single-use rocking bioreactor system at cell-specific perfusion rates below 25 pL-1 cell-1 day-1 . High productivities and favorable product quality are also achievable.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Culture Media/chemistry , Animals , CHO Cells , Cell Count , Cell Proliferation , Cells, Cultured , Cricetulus , Software
2.
Biotechnol Prog ; 29(3): 768-77, 2013.
Article in English | MEDLINE | ID: mdl-23436783

ABSTRACT

A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 10(8) cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 10(8) cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 10(8) cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 10(8) and 10(8) cells/mL was performed using cells from a perfusion run at 10(8) cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing.


Subject(s)
Antibodies, Monoclonal/metabolism , Bioreactors , Cell Culture Techniques/methods , Cryopreservation/methods , Filtration/methods , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/isolation & purification , CHO Cells , Cricetinae , Cricetulus , Perfusion
3.
Cytotechnology ; 59(1): 1-10, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19306069

ABSTRACT

An automated platform for development of high producing cell lines for biopharmaceutical production has been established in order to increase throughput and reduce development costs. The concept is based on the Cello robotic system (The Automation Partnership) and covers screening for colonies and expansion of static cultures. In this study, the glutamine synthetase expression system (Lonza Biologics) for production of therapeutic monoclonal antibodies in Chinese hamster ovary cells was used for evaluation of the automation approach. It is shown that the automated procedure is capable of producing cell lines of equal quality to the traditionally generated cell lines in terms of colony detection following transfection and distribution of IgG titer in the screening steps. In a generic fed-batch evaluation in stirred tank bioreactors, IgG titers of 4.7 and 5.0 g/L were obtained for best expressing cell lines. We have estimated that the number of completed cell line development projects can be increased up to three times using the automated process without increasing manual workload, compared to the manual process. Correlation between IgG titers obtained in early screens and titers achieved in fed-batch cultures in shake flasks was found to be poor. This further implies the benefits of utilizing a high throughput system capable of screening and expanding a high number of transfectants. Two concentrations, 56 and 75 muM, of selection agent, methionine sulphoximine (MSX), were applied to evaluate the impact on the number of colonies obtained post transfection. When applying selection medium containing 75 muM MSX, fewer low producing transfectants were obtained, compared to cell lines selected with 56 muM MSX, but an equal number of high producing cell lines were found. By using the higher MSX concentration, the number of cell line development projects run in parallel could be increased and thereby increasing the overall capacity of the automated platform process.

SELECTION OF CITATIONS
SEARCH DETAIL
...