Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640448

ABSTRACT

Recently, ternary lithium phosphidotetrelates have attracted interest particularly due to their high ionic conductivities, while corresponding sodium and heavier alkali metal compounds have been less investigated. Hence, we report the synthesis and characterization of the novel ternary sodium phosphidogermanate Na3Ge2P3, which is readily accessible via ball milling of the elements and subsequent annealing. According to single crystal X-ray structure determination, Na3Ge2P3 crystallizes in the monoclinic space group P21/c (no. 14.) with unit cell parameters of a = 7.2894(6) Å, b = 14.7725(8) Å, c = 7.0528(6) Å, ß = 106.331(6)° and forms an unprecedented two-dimensional polyanionic network in the b/c plane of interconnected [P3Ge-GeP3] building units. The system can also be interpreted as differently sized ring structures that interconnect and form a two-dimensional network. A comparison with related ternary compounds from the corresponding phase system as well as with the binary compound GeP shows that the polyanionic network of Na3Ge2P3 resembles an intermediate step between highly condensed cages and discrete polyanions, which highlights the structural variety of phosphidogermanates. The structure is confirmed by 23Na- and 31P-MAS NMR measurements and Raman spectroscopy. Computational investigation of the electronic structure reveals that Na3Ge2P3 is an indirect band gap semiconductor with a band gap of 2.9 eV.

2.
ACS Appl Mater Interfaces ; 16(2): 2309-2318, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170673

ABSTRACT

Dendritic copper offers a highly effective method for synthesizing porous copper anodes due to its intricate branching structure. This morphology results in an elevated surface area-to-volume ratio, facilitating shortened electron pathways during aqueous and electrolyte permeation. Here, we demonstrate a procedure for a time- and cost-efficient synthesis routine of fern-like copper microstructures as a host for polymer-templated Si/Ge/C thin films. Dissolvable Zintl clusters and sol-gel chemistry are used to synthesize nanoporous coating as the anode. Cyclic voltammetry (CV) with KOH as the electrolyte is used to estimate the surface area increase in the dendritic copper current collectors (CCs). Half cells are assembled and tested with battery-related techniques such as CV, galvanostatic cycling, and electrochemical impedance spectroscopy, showing a capacity increase in the dendritic copper cells. Energy-dispersive X-ray spectroscopy is used to estimate the removal of K in the bulk after oxidizing the Zintl phase K12Si8Ge9 in the polymer/precursor blend with SiCl4. Furthermore, scanning electron microscopy images are provided to depict the thin films after synthesis and track the degradation of the half cells after cycling, revealing that the morphological degradation through alloying/dealloying is reduced for the dendritic Cu CC anodes as compared with the bare reference. Finally, we highlight this time- and cost-efficient routine for synthesizing this capacity-boosting material for low-mobility and high-capacity anode coatings.

3.
Chemistry ; 30(18): e202304097, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38161190

ABSTRACT

Recently, several ternary phosphidotrielates and -tetrelates have been investigated with respect to their very good ionic conductivity, while less focus was pointed towards their electronic structures. Here, we report on a novel series of compounds, in which several members possess direct band gaps. We investigated the known compounds Li3AlP2, Li3GaP2, Li3InP2, and Na3InP2 and describe the synthesis and the crystal structure of novel Na3In2P3. For all mentioned phosphidotrielates reflectance UV-Vis measurements reveal direct band gaps in the visible light region with decreasing band gaps in the series: Li3AlP2 (2.45 eV), Li3GaP2 (2.18 eV), Li3InP2 (1.99 eV), Na3InP2 (1.37 eV), and Na3In2P3 (1.27 eV). All direct band gaps are confirmed by quantum chemical calculations. The unexpected property occurs despite different structure types. As a common feature all compounds contain EP4 tetrahedra, which share exclusively vertices for E=In and vertices as well as edges for E=Al and Ga. The structure of the novel Na3In2P3 is built up by a polyanionic framework of six-membered rings of corner-sharing InP4 tetrahedra. As a result, the newly designed semiconductors with direct band gaps are suitable for optoelectronic applications, and they can provide significant guidance for the design of new functional semiconductors.

4.
Angew Chem Int Ed Engl ; 62(29): e202304088, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37102264

ABSTRACT

C60 donor dyads in which the carbon cage is covalently linked to an electron-donating unit have been discussed as one possibility for an electron-transfer system, and it has been shown that spherical [Ge9 ] cluster anions show a close relation to fullerenes with respect to their electronic structure. However, the optical properties of these clusters and of functionalized cluster derivatives are almost unknown. We now report on the synthesis of the intensely red [Ge9 ] cluster linked to an extended π-electron system. [Ge9 {Si(TMS)3 }2 {CH3 C=N}-DAB(II)Dipp ]- (1- ) is formed upon the reaction of [Ge9 {Si(TMS)3 }2 ]2- with bromo-diazaborole DAB(II)Dipp -Br in CH3 CN (TMS=trimethylsilyl; DAB(II)=1,3,2-diazaborole with an unsaturated backbone; Dipp=2,6-di-iso-propylphenyl). Reversible protonation of the imine entity in 1- yields the deep green, zwitterionic cluster [Ge9 {Si(TMS)3 }2 {CH3 C=N(H)}-DAB(II)Dipp ] (1-H) and vice versa. Optical spectroscopy combined with time-dependent density functional theory suggests a charge-transfer excitation between the cluster and the antibonding π* orbital of the imine moiety as the cause of the intense coloration. An absorption maximum of 1-H in the red region of the electromagnetic spectrum and the corresponding lowest-energy excited state at λ=669 nm make the compound an interesting starting point for further investigations targeting the design of photo-active cluster compounds.

5.
Angew Chem Int Ed Engl ; 62(10): e202213962, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36588091

ABSTRACT

All-solid-state batteries are promising candidates for safe energy-storage systems due to non-flammable solid electrolytes and the possibility to use metallic lithium as an anode. Thus, there is a challenge to design new solid electrolytes and to understand the principles of ion conduction on an atomic scale. We report on a new concept for compounds with high lithium ion mobility based on a rigid open-framework boron structure. The host-guest structure Li6 B18 (Li3 N) comprises large hexagonal pores filled with ∞ 1 [ ${{}_{{\rm { \infty }}}{}^{{\rm { 1}}}{\rm { [}}}$ Li7 N] strands that represent a perfect cutout from the structure of α-Li3 N. Variable-temperature 7 Li NMR spectroscopy reveals a very high Li mobility in the template phase with a remarkably low activation energy below 19 kJ mol-1 and thus much lower than pristine Li3 N. The formation of the solid solution of Li6 B18 (Li3 N) and Li6 B18 (Li2 O) over the complete compositional range allows the tuning of lithium defects in the template structure that is not possible for pristine Li3 N and Li2 O.

6.
Chem Commun (Camb) ; 58(36): 5486-5489, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35416209

ABSTRACT

Polyhedral main group element clusters of tetrel elements are discussed as suitable building units to form atom-precise nano-structures. Herein we report the oxidative coupling of two [Ge9{Si(TMS)3}2]2- clusters (TMS = trimethylsilyl) resulting in the dimeric cluster [Ge9{Si(TMS)3}2]22-. The dimer is structurally characterized as the [NHCiPrCu]+ adduct {NHCiPrCu[Ge9{Si(TMS)3}2]}2 [NHCiPr = 1,3-di(isopropyl)imidazolylidine]. The linkage of two molecular [Ge9{Si(TMS)3}2]2- anions under formation of an exo Ge-Ge bond occurs in the presence of Cy2BCl (Cy = cyclohexyl) and is mediated by trace amounts of oxygen as indicated by the isolation of the by-product Cy2B-O-BCy2.

7.
Molecules ; 27(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35164088

ABSTRACT

Numerous studies on silicon allotropes with three-dimensional networks or as materials of lower dimensionality have been carried out in the past. Herein, allotropes of silicon, which are based on structures of experimentally accessible [Si9]4- clusters known as stable anionic molecular species in neat solids and in solution, are predicted. Hypothetical oxidative coupling under the formation of covalent Si-Si bonds between the clusters leads to uncharged two-, one- and zero-dimensional silicon nanomaterials not suffering from dangling bonds. A large variety of structures are derived and investigated by quantum chemical calculations. Their relative energies are in the same range as experimentally known silicene, and some structures are even energetically more favorable than silicene. Significantly smaller relative energies are reached by the insertion of linkers in form of tetrahedrally connected Si atoms. A chessboard pattern built of Si9 clusters bridged by tetrahedrally connected Si atoms represents a two-dimensional silicon species with remarkably lower relative energy in comparison with silicene. We discuss the structural and electronic properties of the predicted silicon materials and their building block nido-[Si9]4- based on density functional calculations. All considered structures are semiconductors. The band structures exclusively show bands of low dispersion, as is typical for covalent polymers.

8.
Chemistry ; 28(10): e202104219, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-34969145

ABSTRACT

The targeted search for suitable solid-state ionic conductors requires a certain understanding of the conduction mechanism and the correlation of the structures and the resulting properties of the material. Thus, the investigation of various ionic conductors with respect to their structural composition is crucial for the design of next-generation materials as demanded. We report here on Li5 SnP3 which completes with x=0 the series Li10+4x Sn2-x P6 of the fast lithium-ion conductors α- and ß-Li8 SnP4 (x=0.5) and Li14 SnP6 (x=1). Synthesis, crystal structure determination by single-crystal and powder X-ray diffraction methods, as well as 6 Li, 31 P and 119 Sn MAS NMR and temperature-dependent 7 Li NMR spectroscopy together with electrochemical impedance studies are reported. The correlation between the ionic conductivity and the occupation of octahedral and tetrahedral sites in a close-packed array of P atoms in the series of compounds is discussed. We conclude from this series that in order to receive fast ion conductors a partial occupation of the octahedral vacancies seems to be crucial.

9.
Dalton Trans ; 50(39): 13671-13675, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34570145

ABSTRACT

The syntheses and the characterization of two 17-atom endohedral Ge clusters, [Co2@Ge17]6- (1a) and [Ni2@Ge17]4- (2a), are reported. The anions 1a and 2a, which close the gap between the known 16- and 18-atom Ge clusters, are investigated by single crystal X-ray diffraction and by quantum chemical calculations. The structures mark a new example on the pathway for cluster growth towards larger clusters with icosahedral symmetry. Furthermore, the [Co@Ge10]3- anion (3a) is obtained from liquid ammonia.

10.
Adv Mater ; 33(38): e2100288, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34338353

ABSTRACT

Surface-anisotropic nanoparticles represent a new class of materials that shows potential in a variety of applications, including self-assembly, microelectronics, and biology. Here, the first synthesis of surface-anisotropic silicon quantum dots (SiQDs), obtained through masking on 2D silicon nanosheets, is presented. SiQDs are deposited on the 2D substrate, thereby exposing only one side of the QDs, which is functionalized through well-established hydrosilylation procedures. The UV-sensitive masking substrate is removed through UV-irradiation, which simultaneously initiates the hydrosilylation of a second substrate, thereby introducing a second functional group to the other side of the now free-standing SiQDs. This renders surface-anisotropic SiQDs that have two different functional groups on either side of the particle. This method can be used to introduce a variety of functional groups including hydrophilic and hydrophobic substrates, while the unique optoelectronic properties of the SiQDs remain unaffected. The anisotropic morphology of the QDs is confirmed through the aggregation behavior of amphiphilic Janus SiQDs at the interface of water and hexane. Additionally, anisotropic SiQDs are used to produce the first controlled (sub)monolayer of SiQDs on a gold wafer.

11.
Chem Soc Rev ; 50(15): 8496-8510, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34114586

ABSTRACT

In this article intermetalloid clusters of Cu-Zn, Cu-AI, Cu-Sn, and Cu-Pb are discussed. Intermetallic compounds based on these metal combinations are of the Hume-Rothery type with well-defined structures related to the valence electron count of the involved metals. Many Zintl-type and molecular clusters with these metals are known with remarkable structural parallels to the respective solid-state phases. On several examples, this article discusses intermetalloid clusters in terms of their metal core structures and relates them to structural principles in intermetallic solid-state phases. Also the syntheses of such clusters are addressed. Zintl-type and molecular clusters are most generally accessible from organometallic precursor complexes with redox processes between the different metals as an underlying synthesis concept.

12.
Chem Sci ; 12(20): 6969-6976, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-34123324

ABSTRACT

Even though homoatomic nine-atom germanium clusters are known for two decades, their chemical properties are still rarely investigated. We now discovered that Zintl ion main group-element clusters possess a reactive lone pair of electrons, and we show a new pathway to bind ligands with functional groups to the [Ge9] cluster core through Ge-C bond formation. We report on the reactivity of [Ge9{Si(TMS)3}2]2- (TMS = trimethylsilyl) towards a series of Lewis acidic bromo-boranes. The reaction of [Ge9{Si(TMS)3}2]2- and DAB o-tol-Br (DAB = 1,3,2-diazaborolidine; o-tol = 2-methylphenyl) resulted, depending on the reaction protocol, either in the formation of [Ge9{Si(TMS)3}2DAB o-tol]- (1a) with direct Ge-B interactions, or in [Ge9{Si(TMS)3}2(CH2)4O-DAB o-tol]- (2a) featuring a ring-opened thf moiety. Ring opening reactions occur for all bulkier DABR-Br [R: o-xyl (2,6-dimethylphenyl), Mes (2,4,6-trimethylphenyl), Dipp (2,6-diisopropylphenyl)], DAB(ii)Dipp-Br and acyclic ( i Pr2N)2BBr without Ge-B bond formation as shown for the structural characterization of the ring-opened products of thf (3, 4) and trimethylene oxide (5). In contrast to thf, the activation of CH3CN requires the simultaneous presence of Lewis-acid and Lewis-basic reactants allowing the formation of [Ge9{Si(TMS)3}2CH3C[double bond, length as m-dash]N-DABMes]- (6a). Within the presented compounds, 3 and 4 show an unusual substitution pattern of the three ligands at the [Ge9] core in the solid state. The [Ge9] cluster/borane systems correspond to intermolecular frustrated Lewis pairs (FLPs), in which the [Ge9] cluster with several lone pairs represents the Lewis base, and the borane is the Lewis acid.

13.
Adv Mater ; 33(27): e2008823, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34048605

ABSTRACT

In a green energy economy, electrocatalysis is essential for chemical energy conversion and to produce value added chemicals from regenerative resources. To be widely applicable, an electrocatalyst should comprise the Earth's crust's most abundant elements. The most abundant 3d metal, iron, with its multiple accessible redox states has been manifold applied in chemocatalytic processes. However, due to the low conductivity of FeIII Ox Hy phases, its applicability for targeted electrocatalytic oxidation reactions such as water oxidation is still limited. Herein, it is shown that iron incorporated in conductive intermetallic iron silicide (FeSi) can be employed to meet this challenge. In contrast to silicon-poor iron-silicon alloys, intermetallic FeSi possesses an ordered structure with a peculiar bonding situation including covalent and ionic contributions together with conducting electrons. Using in situ X-ray absorption and Raman spectroscopy, it could be demonstrated that, under the applied corrosive alkaline conditions, the FeSi partly forms a unique, oxidic iron(III) phase consisting of edge and corner sharing [FeO6 ] octahedra together with oxidized silicon species. This phase is capable of driving the oxyge evolution reaction (OER) at high efficiency under ambient and industrially relevant conditions (500 mA cm-2 at 1.50 ± 0.025 VRHE and 65 °C) and to selectively oxygenate 5-hydroxymethylfurfural (HMF).

14.
Angew Chem Int Ed Engl ; 60(5): 2648-2653, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33090635

ABSTRACT

The unique three-dimensional structure of spherical, homoatomic nine-atom germanium clusters opens various possibilities for the spatial arrangement of functional groups. Ligands comprising lone pairs have recently been introduced in the cluster sphere, and we now report the addition of a boranyl group to the cluster featuring a Ge-B exo-cluster bond. The reaction of the twofold-silylated cluster [Ge9 {Si(TMS)3 }2 ]2- (TMS=trimethylsilyl) with 2-chloro-1,3,2-diazaborolidines DABR -Cl leads to the first boranyl-functionalized [Ge9 ] clusters [Ge9 {Si(TMS)3 }2 DABR ]- (R=methyl (1 a), iso-propyl (2 a), ortho-tolyl (3 a)). The anions 2 a and 3 a were structurally characterized as [NHCDipp Cu]+ complexes (NHCDipp =1,3-di(2,6-diisopropylphenyl)imidazolylidine) through single crystal X-ray structure determination. Quantum-chemical calculations manifest the frustrated Lewis pair (FLP) character of the boranyl-functionalized cluster [Ge9 {Si(TMS)3 }2 BCy2 ]- (4 a).

15.
Inorg Chem ; 59(24): 18420-18426, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33251786

ABSTRACT

While lithium phosphides have been investigated intensively, very little is known about the corresponding sodium-based phosphides. Here, we report on the first ternary Na-Ta-P compound Na7TaP4, which is easily accessible via ball milling of the elements and subsequent annealing. The single crystal X-ray structure determination [monoclinic symmetry; space group P21/c; and lattice parameters a = 11.5604(4), b = 8.1530(3), c = 11.5450(5) Å, and ß = 101.602(3)°] reveals [TaP4]7- tetrahedra, which are surrounded by Na+ counterions. Na7TaP4 crystallizes in a new structure type. The structure can be described as a strongly distorted hexagonal close packing of P atoms, in which the Ta atoms are located in tetrahedral voids, and Na atoms occupy all octahedral voids and additionally 3/8 of the tetrahedral voids. The possibility to increase the ion conductivity by changing the number of charge carriers through aliovalent substitution in compounds containing [SiP4]8- and [AlP4]9- is considered. The 31P and 23Na MAS NMR as well as the Raman spectra are in accordance with the structure model, and band structure calculations predict a direct band gap of 2.9 eV.

16.
Inorg Chem ; 59(20): 15218-15227, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33017536

ABSTRACT

Deltahedral nine-atom tetrel element Zintl clusters are promising building blocks for the straightforward solution-based synthesis of intermetalloid clusters through the reaction with organometallic compounds. Herein we report on novel coordination sites of metal-N-heterocyclic carbene (NHC) complexes to [Ge9] clusters and unexpected cluster isomerization. We present the synthesis of a series of coinage metal-NHC complexes of silylated [Ge9] clusters [NHCiPrCu(η4-Ge9{Si(TMS)3}3)] (1; TMS = trimethylsilyl) and [NHCRM(η4-Ge9{Si(TMS)3}2)]- (2a, M = Cu, R = iPr; 3a, M = Cu, R = Mes; 4a, M = Cu, R = Dipp; 5a, M = Ag, R = Dipp; 6a, M = Au, R = Dipp), in which the coinage metals coordinate to open rectangular cluster faces and act as additional cluster vertex atoms. Besides representing promising intermediates on the way to larger intermetalloid clusters, the formation of compound 1 shows that Cu-NHC fragments also coordinate to the open-square Ge faces of the tris-silylated [Ge9] clusters, contrasting the typical interactions with triangular faces of tris-silylated [Ge9] clusters. In compounds 3a and 4a bearing bulky NHC moieties, an unusual silyl group substitution pattern is observed in contrast to 2a, which corresponds to the silyl group arrangement of other metal complexes of bis-silylated [Ge9] clusters. In this context, potential silyl group migration mechanisms are discussed.

17.
ACS Appl Mater Interfaces ; 12(41): 47002-47009, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32955236

ABSTRACT

Nanostructured Ge is considered a highly promising material for Li-ion battery applications as Ge offers high specific capacity and Li-ion diffusivity, while inherent mesoporous nanostructures can contribute resistance against capacity fading as typically induced by high volume expansion in bulk Ge films. Mesoporous GeOx/Ge/C films are synthesized using K4Ge9 Zintl clusters as a Ge precursor and the amphiphilic diblock copolymer polystyrene-block-polyethylene oxide as a templating tool. As compared to a reference sample without post-treatment, enhanced surface-to-volume ratios are achieved through post-treatment with a poor-good azeotrope solvent mixture. High capacities of over 2000 mA h g-1 are obtained with good stability over 300 cycles. Information from morphological and compositional characterization for both reference and post-treated sample suggests that the good electrochemical performance originates from reversible GeO2 conversion reactions.

18.
Inorg Chem ; 59(13): 9077-9085, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32578989

ABSTRACT

Reaction of the Cu(I) sources, [Cu5](Mes)5 and [(iDipp)CuOtBu] (Mes = mesityl; iDipp = 1,3-bis(2,6-diisopropylphenyl)-1H-imidazol-2-ylidene) with the Zn(I) complex [Zn2](Cp*)2 leads to a mixture of intermetallic Cu/Zn clusters with a distribution of species that is dependent on the stoichiometric ratio of the reactants, the reaction time, as well as the temperature. Systematic and careful investigation of the product mixtures rendered the isolation of two new clusters possible, i.e., the Zn-rich, red cluster 1, [CuZn10](Cp*)7 = [Cu(ZnZnCp*)3(ZnCp*)4], as well as the Cu-rich, dark-green cluster 2 [Cu10Zn2](Mes)6(Cp*)2. Structure and bonding of these two species was rationalized with the help of density functional theory calculations. Whereas 1 can be viewed as an 18-electron Cu center coordinated to four ZnCp* and three ZnZnCp* one-electron ligands (with some interligand bonding interaction), compound 2 is better to be described as a six-electron superatom cluster. This unusual electron count is associated with a prolate distortion from a spherical superatom structure. This unexpected situation is likely to be associated with the ZnCp* capping units that offer the possibility to strongly bind to the top and the bottom of the cluster in addition to the bridging mesityl ligands stabilizing the Cu core of the cluster.

19.
Chemistry ; 26(30): 6812-6819, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32119154

ABSTRACT

The lithium phosphidoaluminate Li9 AlP4 represents a promising new compound with a high lithium ion mobility. This triggered the search for new members in the family of lithium phosphidotrielates, and the novel compounds Li3 AlP2 and Li3 GaP2 , obtained directly from the elements via ball milling and subsequent annealing, are reported here. It was unexpectedly found through band structure calculations that Li3 AlP2 and Li3 GaP2 are direct band gap semiconductors with band gaps of 3.1 and 2.8 eV, respectively. Rietveld analyses reveal that both compounds crystallize isotypically in the orthorhombic space group Cmce (no. 64) with lattice parameters of a=11.5138(2), b=11.7634(2) and c=5.8202(1) Šfor Li3 AlP2 , and a=11.5839(2), b=11.7809(2) and c=5.8129(2) Šfor Li3 GaP2 . The crystal structures feature TrP4 (Tr=Al, Ga) corner- and edge-sharing tetrahedra, forming two-dimensional ∞ 2 T r P 2 3 - layers. The lithium atoms are located between and inside these layers. The crystal structures were confirmed by MAS-NMR spectroscopy.

20.
Angew Chem Int Ed Engl ; 59(17): 6800-6805, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-31917887

ABSTRACT

Polymeric 1 ∞ [Bi]- in KBi⋅NH3 has planar zigzag chains with two-connected Bi atoms and metallic properties, whereas KBi, which has helical chains of Bi atoms, is semiconducting. The isomerization of the Bi chain is induced by solvate molecules. In the novel layered solvate structure uncharged 2 ∞ [KBi] layers are separated by intercalated NH3 molecules. These layers are a structural excerpt of the iso(valence)electronic CaSi, whose metallic properties arise from the planarity of the zigzag chain of Si atoms. Computational studies support this view, they show an anisotropic metallic behavior along the Bi chain. Electron delocalization is also found in the new cyclic anion [Bi6 ]4- isolated in K2 [K(18-crown-6)]2 [Bi6 ]⋅9 NH3 . Although [Bi6 ]4- should exhibit one localized double bond, electron delocalization is observed in analogy to the lighter homologues [P6 ]4- and [As6 ]4- . Both compounds were characterized by single-crystal X-ray structure determination.

SELECTION OF CITATIONS
SEARCH DETAIL
...