Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 76(4): 1076-1088, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29705820

ABSTRACT

Bats are important zoonotic reservoirs for many pathogens worldwide. Although their highly specialized ectoparasites, bat flies (Diptera: Hippoboscoidea), can transmit Bartonella bacteria including human pathogens, their eco-epidemiology is unexplored. Here, we analyzed the prevalence and diversity of Bartonella strains sampled from 10 bat fly species from 14 European bat species. We found high prevalence of Bartonella spp. in most bat fly species with wide geographical distribution. Bat species explained most of the variance in Bartonella distribution with the highest prevalence of infected flies recorded in species living in dense groups exclusively in caves. Bat gender but not bat fly gender was also an important factor with the more mobile male bats giving more opportunity for the ectoparasites to access several host individuals. We detected high diversity of Bartonella strains (18 sequences, 7 genotypes, in 9 bat fly species) comparable with tropical assemblages of bat-bat fly association. Most genotypes are novel (15 out of 18 recorded strains have a similarity of 92-99%, with three sequences having 100% similarity to Bartonella spp. sequences deposited in GenBank) with currently unknown pathogenicity; however, 4 of these sequences are similar (up to 92% sequence similarity) to Bartonella spp. with known zoonotic potential. The high prevalence and diversity of Bartonella spp. suggests a long shared evolution of these bacteria with bat flies and bats providing excellent study targets for the eco-epidemiology of host-vector-pathogen cycles.


Subject(s)
Bartonella Infections/veterinary , Bartonella/genetics , Chiroptera , Diptera/microbiology , Genotype , Animals , Bartonella/classification , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Caves , Chiroptera/microbiology , Chiroptera/parasitology , Female , Hungary/epidemiology , Male , Polymerase Chain Reaction/veterinary , Romania/epidemiology , Sequence Analysis, DNA/veterinary
2.
Parasit Vectors ; 10(1): 96, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28222795

ABSTRACT

BACKGROUND: Bat flies (Streblidae and Nycteribiidae) are among the most specialized families of the order Diptera. Members of these two related families have an obligate ectoparasitic lifestyle on bats, and they are known disease vectors for their hosts. However, bat flies have their own ectoparasites: fungi of the order Laboulbeniales. In Europe, members of the Nycteribiidae are parasitized by four species belonging to the genus Arthrorhynchus. We carried out a systematic survey of the distribution and fungus-bat fly associations of the genus in central Europe (Hungary, Romania). RESULTS: We encountered the bat fly Nycteribia pedicularia and the fungus Arthrorhynchus eucampsipodae as new country records for Hungary. The following bat-bat fly associations are for the first time reported: Nycteribia kolenatii on Miniopterus schreibersii, Myotis blythii, Myotis capaccinii and Rhinolophus ferrumequinum; Penicillidia conspicua on Myotis daubentonii; and Phthiridium biarticulatum on Myotis capaccinii. Laboulbeniales infections were found on 45 of 1,494 screened bat flies (3.0%). We report two fungal species: Arthrorhynchus eucampsipodae on Nycteribia schmidlii, and A. nycteribiae on N. schmidlii, Penicillidia conspicua, and P. dufourii. Penicillidia conspicua was infected with Laboulbeniales most frequently (25%, n = 152), followed by N. schmidlii (3.1%, n = 159) and P. dufourii (2.0%, n = 102). Laboulbeniales seem to prefer female bat fly hosts to males. We think this might be due to a combination of factors: female bat flies have a longer life span, while during pregnancy female bat flies are significantly larger than males and accumulate an excess of fat reserves. Finally, ribosomal DNA sequences for A. nycteribiae are presented. CONCLUSIONS: We screened ectoparasitic bat flies from Hungary and Romania for the presence of ectoparasitic Laboulbeniales fungi. Arthrorhynchus eucampsipodae and A. nycteribiae were found on three species of bat flies. This study extends geographical and host ranges of both bat flies and Laboulbeniales fungi. The sequence data generated in this work contribute to molecular phylogenetic studies of the order Laboulbeniales. Our survey shows a complex network of bats, bat flies and Laboulbeniales fungi, of which the hyperparasitic fungi are rare and species-poor. Their host insects, on the other hand, are relatively abundant and diverse.


Subject(s)
Ascomycota/isolation & purification , Chiroptera/parasitology , Diptera/microbiology , Animals , Ascomycota/classification , Ascomycota/genetics , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Hungary , Romania , Sequence Analysis, DNA
3.
Zootaxa ; 4205(2): zootaxa.4205.2.1, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27988583

ABSTRACT

Bat flies are obligate blood-sucking ectoparasites of bats. They are divided into two families: Nycteribiidae and Streblidae. Europe has 17 species of bat flies and 45 species of bats (Mammalia: Chiroptera). This checklist is based on both published records and our own field data and provides updated information on all associations between bat flies and their hosts in Europe. The host-parasite association between Basilia italica Theodor and Plecotus auritus (Linnaeus) is reported for the first time. Moreover, our records of B. italica on Myotis alcathoe Helversen & Heller, B. nana Theodor & Moscona on Plecotus auritus, Nycteribia kolenatii Theodor & Moscona on M. bechsteinii (Kuhl) and Penicillidia dufourii (Westwood) on M. daubentonii (Kuhl) represent new host associations for Hungary.


Subject(s)
Chiroptera/parasitology , Diptera/classification , Animal Distribution , Animals , Checklist , Diptera/growth & development , Diptera/physiology , Female , Host-Parasite Interactions , Male
4.
Parasit Vectors ; 8: 176, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25889985

ABSTRACT

BACKGROUND: Lipoptena cervi (Diptera: Hippoboscidae) is a hematophagous ectoparasite of cervids, which is considered to transmit pathogens between animals and occasionally to humans. The principal life stage that is able to parasitize new hosts is a winged ked that just emerged from a pupa. To facilitate efficient transmission of pathogens between hosts, vertical transmission from female deer keds to their offspring is necessary. We investigated vertical transmission of several vector-borne pathogens associated with cervids. METHODS: Deer keds from several locations in Hungary were collected between 2009 and 2012. All life stages were represented: winged free-ranging adults, wingless adults collected from Capreolus capreolus and Cervus elaphus, developing larvae dissected from gravid females, and fully developed pupae. The presence of zoonotic pathogens was determined using qPCR or conventional PCR assays performed on DNA lysates. From the PCR-positive lysates, a gene fragment was amplified and sequenced for confirmation of pathogen presence, and/or pathogen species identification. RESULTS: DNA of Bartonella schoenbuchensis was found in wingless males (2%) and females (2%) obtained from Cervus elaphus, dissected developing larvae (71%), and free-ranging winged males (2%) and females (11%). DNA of Anaplasma phagocytophilum and Rickettsia species was present in L. cervi adults, but not in immature stages. DNA of Candidatus Neoehrlichia mikurensis was absent in any of the life stages of L. cervi. CONCLUSIONS: B. schoenbuchensis is transmitted from wingless adult females to developing larvae, making it very likely that L. cervi is a vector for B. schoenbuchensis. Lipoptena cervi is probably not a vector for A. phagocytophilum, Rickettsia species, and Candidatus N. mikurensis.


Subject(s)
Bartonella/isolation & purification , Diptera/microbiology , Infectious Disease Transmission, Vertical , Animals , DNA, Bacterial/isolation & purification , Female , Insect Vectors , Larva/microbiology , Male , Pupa/microbiology , Zoonoses/microbiology
5.
Biodivers Data J ; (3): e4187, 2015.
Article in English | MEDLINE | ID: mdl-25733962

ABSTRACT

Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant multicellular European terrestrial and freshwater animals and their geographical distribution at the level of countries and major islands (east of the Urals and excluding the Caucasus region). The Fauna Europaea project comprises about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. Fauna Europaea represents a huge effort by more than 400 contributing taxonomic specialists throughout Europe and is a unique (standard) reference suitable for many user communities in science, government, industry, nature conservation and education. The Diptera-Brachycera is one of the 58 Fauna Europaea major taxonomic groups, and data have been compiled by a network of 55 specialists. Within the two-winged insects (Diptera), the Brachycera constitute a monophyletic group, which is generally given rank of suborder. The Brachycera may be classified into the probably paraphyletic 'lower brachyceran grade' and the monophyletic Eremoneura. The latter contains the Empidoidea, the Apystomyioidea with a single Nearctic species, and the Cyclorrhapha, which in turn is divided into the paraphyletic 'aschizan grade' and the monophyletic Schizophora. The latter is traditionally divided into the paraphyletic 'acalyptrate grade' and the monophyletic Calyptratae. Our knowledge of the European fauna of Diptera-Brachycera varies tremendously among families, from the reasonably well known hoverflies (Syrphidae) to the extremely poorly known scuttle flies (Phoridae). There has been a steady growth in our knowledge of European Diptera for the last two centuries, with no apparent slow down, but there is a shift towards a larger fraction of the new species being found among the families of the nematoceran grade (lower Diptera), which due to a larger number of small-sized species may be considered as taxonomically more challenging. Most of Europe is highly industrialised and has a high human population density, and the more fertile habitats are extensively cultivated. This has undoubtedly increased the extinction risk for numerous species of brachyceran flies, yet with the recent re-discovery of Thyreophoracynophila (Panzer), there are no known cases of extinction at a European level. However, few national Red Lists have extensive information on Diptera. For the Diptera-Brachycera, data from 96 families containing 11,751 species are included in this paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...