Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(19): e202217806, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36920341

ABSTRACT

For miniaturization, as well as for improving artificial nanopore performance, precise local polymer functionalization and the combination of different functionalities are required. Imagining data driven nanopore design automated nanopore functionalization would be beneficial. Using direct laser writing as one option of automated nanopore polymer functionalization visible light induced polymerizations are beneficial. Here, we demonstrate the functionalization of mesoporous silicafilms with two different polymers using automated laser writing. For this we developed a visible light (400-700 nm and 405 nm) N,N(diethylamino)dithiocarbamoylbenzyl(trimethoxy)silane (SBDC) inifierter initiated polymerization. While transferring this visible light induced polymerization using SBDC to a commercially available microscope, direct, automated laser writing, as well as polymer re-initiation was demonstrated. Thereby, polymer spots of 37 and 40 µm in diameter were achieved using 1-5 seconds for each irradiated spot.

2.
Chem Commun (Camb) ; 59(12): 1554-1568, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36655782

ABSTRACT

Visible light induced polymerizations are a strongly emerging field in recent years. Besides the often mild reaction conditions, visible light offers advantages of spatial and temporal control over chain growth, which makes visible light ideal for functionalization of surfaces and more specifically of nanoscale pores. Current challenges in nanopore functionalization include, in particular, local and highly controlled polymer functionalizations. Using spatially limited light sources such as lasers or near field modes for light-induced polymer functionalization is envisioned to allow local functionalization of nanopores and thereby improve nanoporous material performance. These light sources are usually providing visible light while classical photopolymerizations are mostly based on UV-irradiation. In this review, we highlight developments in visible light induced polymerizations and especially in visible light induced controlled polymerizations as well as their potential for nanopore functionalization. Existing examples of visible light induced polymerizations in nanopores are emphasized.

3.
Small ; 19(16): e2207762, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36651003

ABSTRACT

For high throughput applications, e.g., in the context of sensing especially when being combined with machine learning, large sample numbers in acceptable production time are required. This needs automated synthesis and material functionalization concepts ideally combined with high precision. To automate sensing relevant mesopore polymer functionalization while being highly precise in polymer placement, polymer amount control, and polymer sequence design, a process for polymer writing in mesoporous silica films with pore diameter in the range of 13 nm is developed. Mesoporous films are functionalized with different polymers in adjustable polymer amount including block-copolymer functionalization in an automated process using a visible-light induced, controlled photo electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization. While transferring this PET-RAFT to a commercially available microscope, direct, automated laser writing of three different polymers, as well as polymer re-initiation is demonstrated. Using a laser diameter of ≈72 µm, significantly smaller polymer spots of ≈7 µm in diameter are realized. Micrometerscale resolved polymer images including block-copolymers are written into mesoporous layers covering millimeter scale areas requiring a writing time in the range of one second per polymer spot.

4.
RSC Adv ; 12(42): 27109-27113, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36276013

ABSTRACT

One key feature for bioinspired transport design through nanoscale pores is nanolocal, asymmetric as well as multifunctional nanopore functionalization. Here, we use a visible-light induced, controlled photo electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization for asymmetric polymer placement into mesoporous silica thin films including asymmetric polymer sequence design.

5.
Curr Opin Biotechnol ; 63: 200-209, 2020 06.
Article in English | MEDLINE | ID: mdl-32387643

ABSTRACT

Functional nanopores play an essential role in many biotechnological applications such as sensing, or drug delivery. Prominent examples are polymer functionalized ceramic or solid state nanopores. Intensive research efforts led to a discovery of a plethora of polymer functionalized nanopores demonstrating gated molecular transport upon basically all common stimuli. Nevertheless, nature's biological pore transport precision is unreached. This can be, among others, ascribed to limits in design precision especially with respect to functionalization. Recent trends in polymer functionalized nanopores address the role of confinement and polymerization control, strategies toward more sustainable reaction conditions, such as visible light initiation and strategies toward nanoscale local placement of polymer functionalization. The resulting multi-stimuli responsive nanopore performance enables concerted release or transport, side selective separation and selective detection.


Subject(s)
Nanopores , Biotechnology , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...