Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
N Biotechnol ; 82: 92-106, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-38788897

ABSTRACT

Species of Saccharomyces genus have played an irreplaceable role in alcoholic beverage and baking industry for centuries. S. cerevisiae has also become an organism of choice for industrial production of alcohol and other valuable chemicals and a model organism shaping the rise of modern genetics and genomics in the past few decades. Today´s brewing industry faces challenges of decreasing consumption of traditional beer styles and increasing consumer demand for new styles, flavors and aromas. The number of currently used brewer's strains and their genetic diversity is yet limited and implementation of more genetic and phenotypic variation is seen as a solution to cope with the market challenges. This requires modification of current production strains or introduction of novel strains from other settings, e.g. industrial or wild habitats into the brewing industry. Due to legal regulation in many countries and negative customer perception of GMO organisms, the production of food and beverages requires non-GMO production organisms, whose development can be difficult and time-consuming. Here, we apply FIND-IT (Fast Identification of Nucleotide variants by DigITal PCR), an ultrafast genome-mining method, for isolation of novel yeast variants with varying flavor profiles. The FIND-IT method uses combination of random mutagenesis, droplet digital PCR with probes that target a specific desired mutation and a sub-isolation of the mutant clone. Such an approach allows the targeted identification and isolation of specific mutant strains with eliminated production of certain flavor and off-flavors and/or changes in the strain metabolism. We demonstrate that the technology is useful for the identification of loss-of function or gain of function mutations in unrelated industrial and wild strains differing in ploidy. Where no other phenotypic selection exists, this technology serves together with standard breeding techniques as a modern tool facilitating a modification of (brewer's) yeast strains leading to diversification of the product portfolio.


Subject(s)
Beer , Metabolic Engineering , Saccharomyces , Beer/microbiology , Saccharomyces/genetics , Saccharomyces/metabolism , Flavoring Agents/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
2.
Sci Adv ; 8(34): eabq2266, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36001660

ABSTRACT

Improved agricultural and industrial production organisms are required to meet the future global food demands and minimize the effects of climate change. A new resource for crop and microbe improvement, designated FIND-IT (Fast Identification of Nucleotide variants by droplet DigITal PCR), provides ultrafast identification and isolation of predetermined, targeted genetic variants in a screening cycle of less than 10 days. Using large-scale sample pooling in combination with droplet digital PCR (ddPCR) greatly increases the size of low-mutation density and screenable variant libraries and the probability of identifying the variant of interest. The method is validated by screening variant libraries totaling 500,000 barley (Hordeum vulgare) individuals and isolating more than 125 targeted barley gene knockout lines and miRNA or promoter variants enabling functional gene analysis. FIND-IT variants are directly applicable to elite breeding pipelines and minimize time-consuming technical steps to accelerate the evolution of germplasm.

3.
Front Microbiol ; 13: 855736, 2022.
Article in English | MEDLINE | ID: mdl-35495724

ABSTRACT

Lack of active export system often limits the industrial bio-based production processes accumulating the intracellular product and hence complexing the purification steps. L-lysine, an essential amino acid, is produced biologically in quantities exceeding two million tons per year; yet, L-lysine production is challenged by efficient export system at high titers during fermentation. To address this issue, new exporter candidates for efficient efflux of L-lysine are needed. Using metagenomic functional selection, we identified 58 genes encoded on 28 unique metagenomic fragments from cow gut microbiome library that improved L-lysine tolerance. These genes include a novel L-lysine transporter, belonging to a previously uncharacterized EamA superfamily, which is further in vivo characterized as L-lysine exporter using Xenopus oocyte expression system as well as Escherichia coli host. This novel exporter improved L-lysine tolerance in E. coli by 40% and enhanced yield, titer, and the specific production of L-lysine in an industrial Corynebacterium glutamicum strain by 7.8%, 9.5%, and 12%, respectively. Our approach allows the sequence-independent discovery of novel exporters and can be deployed to increase titers and productivity of toxicity-limited bioprocesses.

4.
Biotechnol Biofuels Bioprod ; 15(1): 22, 2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35219341

ABSTRACT

BACKGROUND: Lignosulfonates are significant wood chemicals with a $700 million market, produced by sulfite pulping of wood. During the pulping process, spent sulfite liquor (SSL) is generated, which in addition to lignosulfonates contains hemicellulose-derived sugars-in case of hardwoods primarily the pentose sugar xylose. The pentoses are currently underutilized. If they could be converted into value-added chemicals, overall economic profitability of the process would increase. SSLs are typically very inhibitory to microorganisms, which presents a challenge for a biotechnological process. The aim of the present work was to develop a robust yeast strain able to convert xylose in SSL to carboxylic acids. RESULTS: The industrial strain Ethanol Red of the yeast Saccharomyces cerevisiae was engineered for efficient utilization of xylose in a Eucalyptus globulus lignosulfonate stream at low pH using CRISPR/Cas genome editing and adaptive laboratory evolution. The engineered strain grew in synthetic medium with xylose as sole carbon source with maximum specific growth rate (µmax) of 0.28 1/h. Selected evolved strains utilized all carbon sources in the SSL at pH 3.5 and grew with µmax between 0.05 and 0.1 1/h depending on a nitrogen source supplement. Putative genetic determinants of the increased tolerance to the SSL were revealed by whole genome sequencing of the evolved strains. In particular, four top-candidate genes (SNG1, FIT3, FZF1 and CBP3) were identified along with other gene candidates with predicted important roles, based on the type and distribution of the mutations across different strains and especially the best performing ones. The developed strains were further engineered for production of dicarboxylic acids (succinic and malic acid) via overexpression of the reductive branch of the tricarboxylic acid cycle (TCA). The production strain produced 0.2 mol and 0.12 mol of malic acid and succinic acid, respectively, per mol of xylose present in the SSL. CONCLUSIONS: The combined metabolic engineering and adaptive evolution approach provided a robust SSL-tolerant industrial strain that converts fermentable carbon content of the SSL feedstock into malic and succinic acids at low pH.in production yields reaching 0.1 mol and 0.065 mol per mol of total consumed carbon sources.. Moreover, our work suggests potential genetic background of the tolerance to the SSL stream pointing out potential gene targets for improving the tolerance to inhibitory industrial feedstocks.

5.
Front Genet ; 11: 582789, 2020.
Article in English | MEDLINE | ID: mdl-33240329

ABSTRACT

Fermented foods and particularly beer have accompanied the development of human civilization for thousands of years. Saccharomyces cerevisiae, the dominant yeast in the production of alcoholic beverages, probably co-evolved with human activity. Considering that alcoholic fermentations emerged worldwide, the number of strains used in beer production nowadays is surprisingly low. Thus, the genetic diversity is often limited. This is among others related to the switch from a household brewing style to a more artisan brewing regime during the sixteenth century and latterly the development of single yeast isolation techniques at the Carlsberg Research Laboratory in 1883, resulting in process optimizations in the brewing industry. However, due to fierce competition within the beer market and the increasing demand for novel beer styles, diversification is becoming increasingly important. Moreover, the emergence of craft brewing has influenced big breweries to rediscover yeast as a significant contributor to a beer's aroma profile and realize that there is still room for innovation in the fermentation process. Here, we aim at giving a brief overview on how currently used S. cerevisiae brewing yeasts emerged and comment on the rationale behind replacing them with novel strains. We will present potential sources of yeasts that have not only been used in beer brewing before, including natural sources and sources linked to human activity but also an overlooked source, such as yeast culture collections. We will briefly comment on common yeast isolation techniques and finally touch on additional challenges for the brewing industry in replacing their current brewer's yeasts.

6.
Front Microbiol ; 11: 637, 2020.
Article in English | MEDLINE | ID: mdl-32373090

ABSTRACT

Brettanomyces yeasts have gained popularity in many sectors of the biotechnological industry, specifically in the field of beer production, but also in wine and ethanol production. Their unique properties enable Brettanomyces to outcompete conventional brewer's yeast in industrially relevant traits such as production of ethanol and pleasant flavors. Recent advances in next-generation sequencing (NGS) and high-throughput screening techniques have facilitated large population studies allowing the selection of appropriate yeast strains with improved traits. In order to get a better understanding of Brettanomyces species and its potential for beer production, we sequenced the whole genome of 84 strains, which we make available to the scientific community and carried out several in vitro assays for brewing-relevant properties. The collection includes isolates from different substrates and geographical origin. Additionally, we have included two of the oldest Carlsberg Research Laboratory isolates. In this study, we reveal the phylogenetic pattern of Brettanomyces species by comparing the predicted proteomes of each strain. Furthermore, we show that the Brettanomyces collection is well described using similarity in genomic organization, and that there is a direct correlation between genomic background and phenotypic characteristics. Particularly, genomic patterns affecting flavor production, maltose assimilation, beta-glucosidase activity, and phenolic off-flavor (POF) production are reported. This knowledge yields new insights into Brettanomyces population survival strategies, artificial selection pressure, and loss of carbon assimilation traits. On a species-specific level, we have identified for the first time a POF negative Brettanomyces anomalus strain, without the main spoilage character of Brettanomyces species. This strain (CRL-90) has lost DaPAD1, making it incapable of converting ferulic acid to 4-ethylguaiacol (4-EG) and 4-ethylphenol (4-EP). This loss of function makes CRL-90 a good candidate for the production of characteristic Brettanomyces flavors in beverages, without the contaminant increase in POF. Overall, this study displays the potential of exploring Brettanomyces yeast species biodiversity to find strains with relevant properties applicable to the brewing industry.

7.
PLoS Pathog ; 15(5): e1007692, 2019 05.
Article in English | MEDLINE | ID: mdl-31071195

ABSTRACT

Pathogenic yeasts and fungi are an increasing global healthcare burden, but discovery of novel antifungal agents is slow. The mycoparasitic yeast Saccharomycopsis schoenii was recently demonstrated to be able to kill the emerging multi-drug resistant yeast pathogen Candida auris. However, the molecular mechanisms involved in the predatory activity of S. schoenii have not been explored. To this end, we de novo sequenced, assembled and annotated a draft genome of S. schoenii. Using proteomics, we confirmed that Saccharomycopsis yeasts have reassigned the CTG codon and translate CTG into serine instead of leucine. Further, we confirmed an absence of all genes from the sulfate assimilation pathway in the genome of S. schoenii, and detected the expansion of several gene families, including aspartic proteases. Using Saccharomyces cerevisiae as a model prey cell, we honed in on the timing and nutritional conditions under which S. schoenii kills prey cells. We found that a general nutrition limitation, not a specific methionine deficiency, triggered predatory activity. Nevertheless, by means of genome-wide transcriptome analysis we observed dramatic responses to methionine deprivation, which were alleviated when S. cerevisiae was available as prey, and therefore postulate that S. schoenii acquired methionine from its prey cells. During predation, both proteomic and transcriptomic analyses revealed that S. schoenii highly upregulated and translated aspartic protease genes, probably used to break down prey cell walls. With these fundamental insights into the predatory behavior of S. schoenii, we open up for further exploitation of this yeast as a biocontrol yeast and/or source for novel antifungal agents.


Subject(s)
Fungal Proteins/genetics , Fungal Proteins/metabolism , Genome, Fungal , Proteome/analysis , Saccharomyces cerevisiae/growth & development , Saccharomycopsis/growth & development , Transcriptome , Animals , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Methionine/deficiency , Predatory Behavior , Saccharomyces cerevisiae/genetics , Saccharomycopsis/genetics , Saccharomycopsis/metabolism
8.
Appl Microbiol Biotechnol ; 103(7): 3135-3152, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30830251

ABSTRACT

Owing to their unique potential to ferment carbohydrates, both homo- and heterofermentative lactic acid bacteria (LAB) are widely used in the food industry. Deciphering the genetic basis that determine the LAB fermentation type, and hence carbohydrate utilization, is paramount to optimize LAB industrial processes. Deep sequencing of 24 LAB species and comparison with 32 publicly available genome sequences provided a comparative data set including five major LAB genera for further analysis. Phylogenomic reconstruction confirmed Leuconostoc and Pediococcus species as independently emerging from the Lactobacillus genus, within one of the three phylogenetic clades identified. These clades partially grouped LABs according to their fermentation types, suggesting that some metabolic capabilities were independently acquired during LAB evolution. In order to apply a genome-wide association study (GWAS) at the multigene family level, utilization of 49 carbohydrates was also profiled for these 56 LAB species. GWAS results indicated that obligately heterofermentative species lack 1-phosphofructokinase, required for D-mannose degradation in the homofermentative pathway. Heterofermentative species were found to often contain the araBAD operon, involved in L-arabinose degradation, which is important for heterofermentation. Taken together, our results provide helpful insights into the genetic determinants of LAB carbohydrate metabolism, and opens for further experimental research, aiming at validating the role of these candidate genes for industrial applications.


Subject(s)
Carbohydrate Metabolism/genetics , Genetic Association Studies , Genome, Bacterial , Lactobacillales/genetics , Fermentation , Food Microbiology , High-Throughput Nucleotide Sequencing , Lactobacillales/physiology , Lactobacillus/enzymology , Lactobacillus/genetics , Mannose/metabolism , Phosphofructokinase-1/metabolism , Phylogeny
9.
Gigascience ; 8(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30715293

ABSTRACT

BACKGROUND: The selection of bioengineering platform strains and engineering strategies to improve the stress resistance of Saccharomyces cerevisiae remains a pressing need in bio-based chemical production. Thus, a systematic effort to exploit genotypic and phenotypic diversity to boost yeast's industrial value is still urgently needed. RESULTS: We analyzed 5,400 growth curves obtained from 36 S. cerevisiae strains and comprehensively profiled their resistances against 13 industrially relevant stresses. We observed that bioethanol and brewing strains exhibit higher resistance against acidic conditions; however, plant isolates tend to have a wider range of resistance, which may be associated with their metabolome and fluxome signatures in the tricarboxylic acid cycle and fatty acid metabolism. By deep genomic sequencing, we found that industrial strains have more genomic duplications especially affecting transcription factors, showing that they result from disparate evolutionary paths in comparison with the environmental strains, which have more indels, gene deletions, and strain-specific genes. Genome-wide association studies coupled with protein-protein interaction networks uncovered novel genetic determinants of stress resistances. CONCLUSIONS: These resistance-related engineering targets and strain rankings provide a valuable source for engineering significantly improved industrial platform strains.


Subject(s)
Genome-Wide Association Study , Genomics , Metabolomics , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adaptation, Biological , Computational Biology , Genetic Variation , Genome-Wide Association Study/methods , Genomics/methods , Metabolome , Metabolomics/methods , Phylogeny , Saccharomyces cerevisiae/classification , Stress, Physiological
10.
Curr Opin Biotechnol ; 56: 30-35, 2019 04.
Article in English | MEDLINE | ID: mdl-30173102

ABSTRACT

The adequate application of Brettanomyces species could raise a potential opportunity for the beer industry, generating new products and optimizing production processes. Several valuable properties like high ethanol yield, tolerance to low pH and production of unique flavors have brought this yeast species into the spotlight. Aroma and flavor production of Brettanomyces in beer is currently under discussion, and it can be adjusted if the mechanism insights are understood. This review summarizes the recent findings in physiological, genetic and biochemical traits related to the application of Brettanomyces species for brewing.


Subject(s)
Beer/microbiology , Brettanomyces/metabolism , Beer/analysis , Brettanomyces/classification , Brettanomyces/genetics , Brettanomyces/growth & development , Esters/metabolism , Ethanol , Fermentation , Flavoring Agents , Odorants , Phenols/metabolism , Taste , Yeasts/classification , Yeasts/metabolism
11.
Article in English | MEDLINE | ID: mdl-29872655

ABSTRACT

For an industrial fermentation process, it can be advantageous to decouple cell growth from product formation. This decoupling would allow for the rapid accumulation of biomass without inhibition from product formation, after which the fermentation can be switched to a mode where cells would grow minimally and primarily act as catalysts to convert substrate into desired product. The switch in fermentation mode should preferably be accomplished without the addition of expensive inducers. A common cell factory Saccharomyces cerevisiae is a Crabtree-positive yeast and is typically fermented at industrial scale under glucose-limited conditions to avoid the formation of ethanol. In this work, we aimed to identify and characterize promoters that depend on glucose concentration for use as dynamic control elements. Through analysis of mRNA data of S. cerevisiae grown in chemostats under glucose excess or limitation, we identified 34 candidate promoters that strongly responded to glucose presence or absence. These promoters were characterized in small-scale batch and fed-batch cultivations using a quickly maturing rapidly degrading green fluorescent protein yEGFP3-Cln2PEST as a reporter. Expressing 3-hydroxypropionic acid (3HP) pathway from a set of selected regulated promoters allowed for suppression of 3HP production during glucose-excess phase of a batch cultivation with subsequent activation in glucose-limiting conditions. Regulating the 3HP pathway by the ICL1 promoter resulted in 70% improvement of 3HP titer in comparison to PGK1 promoter.

12.
Curr Pharm Des ; 24(19): 2208-2225, 2018.
Article in English | MEDLINE | ID: mdl-29766793

ABSTRACT

Polyphenols form a group of important natural bioactive compounds with numerous ascribed healthbeneficial attributes (e.g. antioxidant, anti-inflammatory, anti-microbial and tumor-suppressing properties). Some polyphenols can also be used as natural dyes or plastic precursors. Notwithstanding their relevance, production of most of these compounds still relies on extraction from plant material, which for most of it is a costly and an inefficient procedure. The use of microbial cell factories for this purpose is an emerging alternative that could allow a more efficient and sustainable production. The most recent advances in molecular biology and genetic engineering, combined with the ever-growing understanding of microbial physiology have led to multiple success stories. Production of multiple polyphenolic compounds or their direct precursors has been achieved not only in the common production hosts, such as Escherichia coli and Saccharomyces cerevisiae, but also in Corynebacterium glutamicum and Lactococcus lactis. However, boosting production of native compounds or introduction of heterologous biosynthetic pathways also brings certain challenges, such as the need to express, balance and maintain efficient precursor supply. This review will discuss the most recent advances in the field of metabolic engineering of microorganisms for polyphenol biosynthesis and its future perspectives, as well as outlines their potential health benefits and current production methods.


Subject(s)
Corynebacterium glutamicum/chemistry , Escherichia coli/chemistry , Lactococcus lactis/chemistry , Metabolic Engineering , Polyphenols/pharmacology , Saccharomyces cerevisiae/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Corynebacterium glutamicum/metabolism , Escherichia coli/metabolism , Humans , Lactococcus lactis/metabolism , Polyphenols/biosynthesis , Polyphenols/chemistry , Saccharomyces cerevisiae/metabolism
13.
Metab Eng ; 47: 73-82, 2018 05.
Article in English | MEDLINE | ID: mdl-29534903

ABSTRACT

Most microbial species, including model eukaryote Saccharomyces cerevisiae, possess genetic capability to utilize many alternative nutrient sources. Yet, it remains an open question whether these manifest into assimilatory phenotypes. Despite possessing all necessary pathways, S. cerevisiae grows poorly or not at all when glycerol is the sole carbon source. Here we discover, through multiple evolved lineages, genetic determinants underlying glycerol catabolism and the associated fitness trade-offs. Most evolved lineages adapted through mutations in the HOG pathway, but showed hampered osmotolerance. In the other lineages, we find that only three mutations cause the improved phenotype. One of these contributes counter-intuitively by decoupling the TCA cycle from oxidative phosphorylation, and thereby hampers ethanol utilization. Transcriptomics, proteomics and metabolomics analysis of the re-engineered strains affirmed the causality of the three mutations at molecular level. Introduction of these mutations resulted in improved glycerol utilization also in industrial strains. Our findings not only have a direct relevance for improving glycerol-based bioprocesses, but also illustrate how a metabolic pathway can remain unexploited due to fitness trade-offs in other, ecologically important, traits.


Subject(s)
Directed Molecular Evolution , Glycerol/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
14.
Biotechnol Bioeng ; 114(11): 2528-2538, 2017 11.
Article in English | MEDLINE | ID: mdl-28688186

ABSTRACT

Microbial production of plant derived, biologically active compounds has the potential to provide economic and ecologic alternatives to existing low productive, plant-based processes. Current production of the pharmacologically active cyclic triterpenoid betulinic acid is realized by extraction from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into Saccharomyces cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg/L, and total triterpenoid concentrations of 854 mg/L, the highest concentrations reported so far. Purification of lupane-type triterpenoids with high selectivity and yield was achieved by solid-liquid extraction without prior cell disruption using polar aprotic solvents such as acetone or ethyl acetate and subsequent precipitation with strong acids. This study highlights the potential of microbial production of plant derived triterpenoids in S. cerevisiae by combining metabolic and process engineering.


Subject(s)
Batch Cell Culture Techniques/methods , Ethanol/metabolism , Metabolic Engineering/methods , Saccharomyces cerevisiae/physiology , Triterpenes/isolation & purification , Triterpenes/metabolism , Bioreactors/microbiology , Fermentation/physiology , Metabolic Networks and Pathways/genetics , Pentacyclic Triterpenes , Saccharomyces cerevisiae/cytology , Betulinic Acid
15.
Anal Chem ; 89(17): 8738-8747, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28727413

ABSTRACT

Absolute quantification of free intracellular metabolites is a valuable tool in both pathway discovery and metabolic engineering. In this study, we conducted a comprehensive examination of different hot and cold combined quenching/extraction approaches to extract and quantify intracellular metabolites of Pseudomonas taiwanensis (P. taiwanensis) VLB120 to provide a useful reference data set of absolute intracellular metabolite concentrations. The suitability of commonly used metabolomics tools including a pressure driven fast filtration system followed by combined quenching/extraction techniques (such as cold methanol/acetonitrile/water, hot water, and boiling ethanol/water, as well as cold ethanol/water) were tested and evaluated for P. taiwanensis VLB120 metabolome analysis. In total 94 out of 107 detected intracellular metabolites were quantified using an isotope-ratio-based approach. The quantified metabolites include amino acids, nucleotides, central carbon metabolism intermediates, redox cofactors, and others. The acquired data demonstrate that the pressure driven fast filtration approach followed by boiling ethanol quenching/extraction is the most adequate technique for P. taiwanensis VLB120 metabolome analysis based on quenching efficiency, extraction yields of metabolites, and experimental reproducibility.


Subject(s)
Metabolome , Metabolomics/methods , Pseudomonas/chemistry , Solid Phase Extraction/methods , Acetonitriles/chemistry , Cold Temperature , Ethanol/chemistry , Hot Temperature , Methanol/chemistry , Pseudomonas/physiology , Solvents/chemistry , Water/chemistry
16.
Bioresour Technol ; 245(Pt B): 1645-1654, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28634125

ABSTRACT

Yeast Saccharomyces cerevisiae was engineered for de novo production of six different flavonoids (naringenin, liquiritigenin, kaempferol, resokaempferol, quercetin, and fisetin) directly from glucose, without supplementation of expensive intermediates. This required reconstruction of long biosynthetic pathways, comprising up to eight heterologous genes from plants. The obtained titers of kaempferol 26.57±2.66mgL-1 and quercetin 20.38±2.57mgL-1 exceed the previously reported titers in yeast. This is also the first report of de novo biosynthesis of resokaempferol and fisetin in yeast. The work demonstrates the potential of flavonoid-producing yeast cell factories.


Subject(s)
Fermentation , Metabolic Engineering , Saccharomyces cerevisiae , Biosynthetic Pathways , Flavonoids
17.
ChemSusChem ; 10(16): 3252-3259, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28650099

ABSTRACT

2,3-Butanediol (BDO) presents a promising platform molecule for the synthesis of basic and fine chemicals. Biotechnological production of BDO from renewable resources with living microbes enables high concentrations in the fermentation broth. The recovery of high-boiling BDO from an aqueous fermentation broth presents a subsequent challenge. A method is proposed for BDO isolation based on reversible complexation with phenylboronate in an anionic complex. BDO can be recovered by back-extraction into an acidic solution. The composition of the extracted species was determined by NMR spectroscopy, MS, and GC-MS methods. The conditions of extraction and back-extraction were optimized by using commercial BDO and finally applied to different fermentation broths. Up to 72-93 % BDO can be extracted and up to 80-90 % can be back-extracted under the optimized conditions. Purified bio-BDO was used in the presence of sulfuric acid for the synthesis of methyl ethyl ketone, an established organic solvent and discussed tailor-made biofuel.


Subject(s)
Butylene Glycols/isolation & purification , Chemical Fractionation/methods , Boronic Acids/chemistry , Butylene Glycols/chemistry , Butylene Glycols/metabolism , Catalysis , Fermentation , Water/chemistry
18.
Biotechnol Adv ; 35(4): 419-442, 2017 07.
Article in English | MEDLINE | ID: mdl-28396124

ABSTRACT

This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.


Subject(s)
Lactobacillus , Metabolic Engineering , Pediococcus , Biomass , Biotechnology , Lactobacillus/genetics , Lactobacillus/metabolism , Pediococcus/genetics , Pediococcus/metabolism
19.
FEMS Yeast Res ; 16(7)2016 11.
Article in English | MEDLINE | ID: mdl-27609600

ABSTRACT

Fourteen indigenous Saccharomyces cerevisiae strains isolated from the barks of three tree species located in the Atlantic Rain Forest and Cerrado biomes in Brazil were genetically and physiologically compared to laboratory strains and to strains from the Brazilian fuel ethanol industry. Although no clear correlation could be found either between phenotype and isolation spot or between phenotype and genomic lineage, a set of indigenous strains with superior industrially relevant traits over commonly known industrial and laboratory strains was identified: strain UFMG-CM-Y257 has a very high specific growth rate on sucrose (0.57 ± 0.02 h-1), high ethanol yield (1.65 ± 0.02 mol ethanol mol hexose equivalent-1), high ethanol productivity (0.19 ± 0.00 mol L-1 h-1), high tolerance to acetic acid (10 g L-1) and to high temperature (40°C). Strain UFMG-CM-Y260 displayed high ethanol yield (1.67 ± 0.13 mol ethanol mol hexose equivalent-1), high tolerance to ethanol and to low pH, a trait which is important for non-aseptic industrial processes. Strain UFMG-CM-Y267 showed high tolerance to acetic acid and to high temperature (40°C), which is of particular interest to second generation industrial processes.


Subject(s)
Biodiversity , Industrial Microbiology/methods , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/physiology , Acetic Acid/toxicity , Brazil , Drug Tolerance , Ethanol/metabolism , Hot Temperature , Saccharomyces cerevisiae/classification , Sucrose/metabolism , Trees/microbiology
20.
Microb Cell Fact ; 15: 53, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26980206

ABSTRACT

BACKGROUND: In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. RESULTS: Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. CONCLUSIONS: In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.


Subject(s)
Lactic Acid/analogs & derivatives , Metabolic Engineering/methods , Oxidoreductases/metabolism , Saccharomyces cerevisiae , Chloroflexus/enzymology , Chloroflexus/genetics , Gene Expression Regulation, Fungal , Lactic Acid/biosynthesis , Metabolic Networks and Pathways , Organisms, Genetically Modified , Oxidation-Reduction , Oxidoreductases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Salmonella enterica/enzymology , Salmonella enterica/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...