Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Netw Sci ; 8(1): 67, 2023.
Article in English | MEDLINE | ID: mdl-37745797

ABSTRACT

Incorporating social factors into disease prevention and control efforts is an important undertaking of behavioral epidemiology. The interplay between disease transmission and human health behaviors, such as vaccine uptake, results in complex dynamics of biological and social contagions. Maximizing intervention adoptions via network-based targeting algorithms by harnessing the power of social contagion for behavior and attitude changes largely remains a challenge. Here we address this issue by considering a multiplex network setting. Individuals are situated on two layers of networks: the disease transmission network layer and the peer influence network layer. The disease spreads through direct close contacts while vaccine views and uptake behaviors spread interpersonally within a potentially virtual network. The results of our comprehensive simulations show that network-based targeting with pro-vaccine supporters as initial seeds significantly influences vaccine adoption rates and reduces the extent of an epidemic outbreak. Network targeting interventions are much more effective by selecting individuals with a central position in the opinion network as compared to those grouped in a community or connected professionally. Our findings provide insight into network-based interventions to increase vaccine confidence and demand during an ongoing epidemic.

2.
ArXiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824428

ABSTRACT

Incorporating social factors into disease prevention and control efforts is an important undertaking of behavioral epidemiology. The interplay between disease transmission and human health behaviors, such as vaccine uptake, results in complex dynamics of biological and social contagions. Maximizing intervention adoptions via network-based targeting algorithms by harnessing the power of social contagion for behavior and attitude changes largely remains a challenge. Here we address this issue by considering a multiplex network setting. Individuals are situated on two layers of networks: the disease transmission network layer and the peer influence network layer. The disease spreads through direct close contacts while vaccine views and uptake behaviors spread interpersonally within a potentially virtual network. The results of our comprehensive simulations show that network-based targeting with pro-vaccine supporters as initial seeds significantly influences vaccine adoption rates and reduces the extent of an epidemic outbreak. Network targeting interventions are much more effective by selecting individuals with a central position in the opinion network as compared to those grouped in a community or connected professionally. Our findings provide insight into network-based interventions to increase vaccine confidence and demand during an ongoing epidemic.

3.
PLoS One ; 16(12): e0262383, 2021.
Article in English | MEDLINE | ID: mdl-34972192

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0258666.].

4.
PLoS One ; 16(10): e0258666, 2021.
Article in English | MEDLINE | ID: mdl-34673801

ABSTRACT

To understand airline transportation networks (ATN) systems we can effectively represent them as multilayer networks, where layers capture different airline companies, the nodes correspond to the airports and the edges to the routes between the airports. We focus our study on the importance of leveraging synthetic generative multilayer models to support the analysis of meaningful patterns in these routes, capturing an ATN's evolution with an emphasis on measuring its resilience to random or targeted attacks and considering deliberate locations of airports. By resorting to the European ATN and the United States ATN as exemplary references, in this work, we provide a systematic analysis of major existing synthetic generation models for ATNs, specifically ANGEL, STARGEN and BINBALL. Besides a thorough study of the topological aspects of the ATNs created by the three models, our major contribution lays on an unprecedented investigation of their spectral characteristics based on Random Matrix Theory and on their resilience analysis based on both site and bond percolation approaches. Results have shown that ANGEL outperforms STARGEN and BINBALL to better capture the complexity of real-world ATNs by featuring the unique properties of building a multiplex ATN layer by layer and of replicating layers with point-to-point structures alongside hub-spoke formations.


Subject(s)
Aircraft/statistics & numerical data , Algorithms , Models, Theoretical , Transportation/methods , Travel/statistics & numerical data , Humans
SELECTION OF CITATIONS
SEARCH DETAIL