Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38920283

ABSTRACT

The leaf-mining microlepidopteran, Macrosaccus morrisella (Fitch) (Lepidoptera: Gracillariidae), has emerged as a new pest of soybean, Glycine max (L.) Merrill (Fabales: Fabaceae), in Canada and the United States, but little is known about its life history traits. Thus, this study was conducted to assess the immature developmental rate of M. morrisella, from egg to adult emergence, on soybean at different temperatures, and the longevity of adults supplied with water and/or honey at different temperatures. The time to 50% emergence of adults was 71.90, 36.33, 24.62, and 17.83 days at 15, 20, 25, and 30 °C, respectively. The lower developmental threshold of M. morrisella was estimated at 8.96 °C, with 425.04 degree-days required for egg-to-adult development. For adult longevity, time to 50% mortality at 25 °C was 15.00, 4.00, and 2.00 days when adults were provided with 25% (v/v) honey-water solution, water, or nothing, respectively. In a follow-up experiment, time to 50% mortality at 25 °C was 24.00, 6.00, 3.00, and 3.00 days when adults were provided with honey and water (offered separately), honey, water, or nothing, respectively, with a synergistic effect when honey and water were offered simultaneously as opposed to honey or water alone. Finally, when fed 25% (v/v) honey-water solution and maintained at 20, 25, and 30 °C, time to 50% mortality of adults was 26.50, 15.00, and 15.00 days. These results inform the understanding of the basic biology of M. morrisella and will help inform the future development of management programs for this insect in soybean.

2.
J Econ Entomol ; 115(1): 305-312, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34993551

ABSTRACT

The interspecific variation in susceptibility to insecticides by lepidopteran species of soybean [Glycine max L. (Merr.)], cotton (Gossypium hirsutum L.), and maize (Zea mays L.) crops from Brazil were evaluated. Populations of Anticarsia gemmatalis (Hübner) (Lepidoptera: Erebidae), Chrysodeixis includens (Walker), Helicoverpa armigera (Hübner), Spodoptera frugiperda (Smith), Spodoptera eridania (Stoll), Spodoptera cosmioides (Walker), and Spodoptera albula (Walker) (Lepidoptera: Noctuidae) were collected from 2019 to 2021. Early L3 larvae (F2 generation) were exposed to the formulated insecticides methoxyfenozide, indoxacarb, spinetoram, flubendiamide, and chlorfenapyr in diet-overlay bioassays. The median lethal concentrations (LC50) were used to calculate tolerance ratios (TR) of each species in relation to the most susceptible species to each insecticide. The lowest LC50 values were verified for A. gemmatalis to all insecticides tested. Chrysodeixis includens and most of the Spodoptera species were moderately tolerant to methoxyfenozide (TR < 8.0-fold) and indoxacarb (TR < 39.4-fold), whereas H. armigera was the most tolerant species to methoxyfenozide (TR = 21.5-fold), and indoxacarb (TR = 106.4-fold). Spodoptera cosmioides, S. eridania, and S. albula showed highest tolerance to spinetoram (TR > 1270-fold), S. eridania, S. frugiperda, and S. albula to flubendiamide (TR from 38- to 547-fold), and S. albula to indoxacarb (TR = 138.6-fold). A small variation in susceptibility to chlorfenapyr (TR < 4.4-fold) was found among the lepidopteran evaluated. Our findings indicate a large variation in susceptibility to indoxacarb, spinetoram, and flubendiamide and a relatively low variation in susceptibility to methoxyfenozide and chlorfenapyr by lepidopteran species of soybean, cotton, and maize from Brazil.


Subject(s)
Insecticides , Moths , Animals , Brazil , Gossypium , Insecticide Resistance , Insecticides/pharmacology , Larva , Glycine max , Spodoptera , Zea mays
3.
Chemosphere ; 259: 127499, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32629314

ABSTRACT

Soybean looper (SBL), Chrysodeixis includens (Walker), is an economically important soybean and cotton pest in Brazil. Here, we selected an SBL strain resistant to teflubenzuron using F2 screening, estimated the resistance allele frequency, characterized the inheritance of resistance, investigated fitness costs, evaluated patterns of cross-resistance, and determined the magnitude of resistance. The teflubenzuron-resistant strain (Teflu-R) was selected from field-collected populations with an estimated allele frequency of 0.1700. Estimated LC50 values were 0.010 and 363.61 µg a.i. cm-2 for the susceptible (Sus) and Teflu-R strains, respectively, representing a 36,361-fold resistance ratio (RR). The LC50 values of reciprocal crosses were 1.02 and 0.59 µg a.i. cm-2, suggesting that resistance is autosomally inherited. The low survival of reciprocal crosses (16 and 20%) on teflubenzuron-sprayed leaves indicates incomplete recessive resistance. The number of segregations influencing resistance was 2.72, suggesting a polygenic effect. The Teflu-R strain showed longer development periods as well as lower survival and population growth than the Sus strain, revealing fitness costs. The Teflu-R strain also showed high cross-resistancesto other chitin inhibitor insecticides, such as novaluron (RR = 6147-fold) and lufenuron (RR = 953-fold), but low cross-resistance to methoxyfenozide, flubendiamide, and indoxacarb (RR < 3.45-fold). On discriminatory concentrations of teflubenzuron and novaluron, populations of SBL showed survival rates from 15 to 52%, indicating field resistance to these insecticides. Our findings indicated that resistance to teflubenzuron in SBL is autosomal, recessive, polygenic, and associated with fitness cost. We also found a high cross-resistance to other benzoylphenylureas and a high frequency of resistance to this mode-of-action in SBL in Brazil.


Subject(s)
Chitin/antagonists & inhibitors , Glycine max/parasitology , Insecticide Resistance , Insecticides , Moths/drug effects , Animals , Benzamides/pharmacology , Brazil , Chitin/biosynthesis , Chitin/pharmacology , Hydrazines/pharmacology , Insecticides/pharmacology , Juvenile Hormones/pharmacology , Larva/drug effects , Lepidoptera/drug effects , Phenylurea Compounds/pharmacology , Plant Diseases/parasitology , Glycine max/drug effects , Sulfones/pharmacology
4.
Pest Manag Sci ; 76(12): 4029-4035, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32520447

ABSTRACT

BACKGROUND: Spodoptera eridania (Stoll), S. cosmioides (Walker) and S. albula (Walker) (Lepidoptera: Noctuidae) are considered secondary pests of soybean in South America. The genetically-modified soybean DAS-444Ø6-6 × DAS-81419-2 with tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate and ammonium glufosinate herbicides (event DAS-444Ø6-6) and insect-resistance due to expression of Cry1Ac and Cry1F Bt proteins (event DAS-81419-2) may provide a potential tool for integrated pest management (IPM) of these species in soybean fields. Based on this, we conducted bioassays to evaluate the survival and development of S. eridania, S. cosmioides and S. albula fed on Cry1Ac/Cry1F-soybean leaf tissue. RESULTS: Spodoptera eridania and S. cosmioides fed on Cry1Ac/Cry1F-soybean showed longer developmental time, lower larval and egg to adult survival compared to those fed on non-Bt soybean, reducing the population growth of these species. Spodoptera albula also had lower larval survival and number of insects that reached adulthood on Cry1Ac/Cry1F-soybean. However, no significant effects of Cry1Ac/Cry1F-soybean on population growth parameters were detected in this species. CONCLUSIONS: Soybean with stacked events DAS-444Ø6-6 × DAS-81419-2 expressing Cry1Ac/Cry1F Bt proteins provide population suppression of S. eridania and S. cosmioides. However, this Bt soybean had minimal effects on S. albula, and is unlikely to have negative population-level effects on this species. It is expected that under field conditions, other control tactics must be integrated with Cry1Ac/Cry1F-soybean for the management of these Spodoptera species. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Glycine max , Hemolysin Proteins , Animals , Bacterial Proteins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Larva , Plants, Genetically Modified/genetics , Glycine max/genetics , Spodoptera/genetics
5.
Sci Rep ; 10(1): 10080, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32572133

ABSTRACT

Spodoptera frugiperda is one of the main pests of maize and cotton in Brazil and has increased its occurrence on soybean. Field-evolved resistance of this species to Cry1 Bacillus thuringiensis (Bt) proteins expressed in maize has been characterized in Brazil, Argentina, Puerto Rico and southeastern U.S. Here, we conducted studies to evaluate the survival and development of S. frugiperda strains that are susceptible, selected for resistance to Bt-maize single (Cry1F) or pyramided (Cry1F/Cry1A.105/Cry2Ab2) events and F1 hybrids of the selected and susceptible strains (heterozygotes) on DAS-444Ø6-6 × DAS-81419-2 soybean with tolerance to 2,4-D, glyphosate and ammonium glufosinate herbicides (event DAS-444Ø6-6) and insect-resistant due to expression of Cry1Ac and Cry1F Bt proteins (event DAS-81419-2). Susceptible insects of S. frugiperda did not survive on Cry1Ac/Cry1F-soybean. However, homozygous-resistant and heterozygous insects were able to survive and emerge as fertile adults when fed on Cry1Ac/Cry1F-soybean, suggesting that the resistance is partially recessive. Life history studies revealed that homozygous-resistant insects had similar development, reproductive performance, net reproductive rate, intrinsic and finite rates of population increase on Cry1Ac/Cry1F-soybean and non-Bt soybean. In contrast, heterozygotes had their fertility life table parameters significantly reduced on Cry1Ac/Cry1F-soybean. Therefore, the selection of S. frugiperda for resistance to single and pyramided Bt maize can result in cross-crop resistance to DAS-444Ø6-6 × DAS-81419-2 soybean. The importance of these results to integrated pest management (IPM) and insect resistance management (IRM) programs is discussed.


Subject(s)
Bacillus thuringiensis Toxins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Spodoptera/metabolism , Zea mays/genetics , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins/metabolism , Bacterial Proteins/metabolism , Biochemical Phenomena , Brazil , Disease Resistance/genetics , Endotoxins/metabolism , Fabaceae/metabolism , Food Hypersensitivity , Hemolysin Proteins/metabolism , Insecticide Resistance/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Glycine max/genetics , Glycine max/metabolism , Spodoptera/immunology , Spodoptera/pathogenicity
6.
J Invertebr Pathol ; 164: 66-68, 2019 06.
Article in English | MEDLINE | ID: mdl-31078547

ABSTRACT

Chrysodeixis includens nucleopolyhedrovirus (ChinNPV: Baculoviridae: Alphabaculovirus) is an active ingredient of a biological-based insecticide (Chrysogen®) recommended against soybean looper (SBL), Chrysodeixis includens (Walker, [1858]), in soybean in Brazil. We investigated if SBL strains resistant to chemical insecticides are cross-resistant to the baculovirus ChinNPV. In droplet feeding bioassays, SBL strains resistant to lambda-cyhalothrin and teflubenzuron showed equivalent susceptibility to ChinNPV as heterozygous and susceptible strains, indicating no cross-resistance between ChinNPV and chemical insecticides in SBL. Therefore, the ChinNPV is a valuable new "mode-of-action" tool for SBL resistance management in Brazil.


Subject(s)
Insecticides/pharmacology , Larva/virology , Nucleopolyhedroviruses/drug effects , Animals , Benzamides/pharmacology , Biological Assay , Brazil , Crops, Agricultural , Insecticide Resistance , Moths/virology , Nitriles/pharmacology , Nucleopolyhedroviruses/growth & development , Pest Control, Biological , Pyrethrins/pharmacology , Glycine max
SELECTION OF CITATIONS
SEARCH DETAIL
...