Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(10): e0291273, 2023.
Article in English | MEDLINE | ID: mdl-37796773

ABSTRACT

PURPOSE: The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M1) and acceleration-weighting (M2) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes signal dropouts while maintaining blood signal suppression. METHODS: Numerically optimized gradient waveforms were adapted using a novel method that allows for the simultaneous tuning of M1- and M2-weighting by changing only one timing variable. Seven healthy volunteers underwent diffusion-weighted magnetic resonance imaging (DWI) with five diffusion encoding schemes (monopolar, velocity-compensated (M1 = 0), acceleration-compensated (M1 = M2 = 0), 84%-M1-M2-compensated, 67%-M1-M2-compensated) at b-values of 50 and 800 s/mm2 at a constant echo time of 70 ms. Signal dropout correction and apparent diffusion coefficients (ADCs) were quantified using regions of interest in the left and right liver lobe. The blood appearance was evaluated using two five-point Likert scales. RESULTS: Signal dropout was more pronounced in the left lobe (19%-42% less signal than in the right lobe with monopolar scheme) and best corrected by acceleration-compensation (8%-10% less signal than in the right lobe). The black-blood state was best with monopolar encodings and decreased significantly (p < 0.001) with velocity- and/or acceleration-compensation. The partially M1-M2-compensated encoding schemes could restore the black-blood state again. Strongest ADC bias occurred for monopolar encodings (difference between left/right lobe of 0.41 µm2/ms for monopolar vs. < 0.12 µm2/ms for the other encodings). CONCLUSION: All of the diffusion encodings used in this study demonstrated suitability for routine DWI application. The results indicate that a perfect value for the level of M1-M2-compensation does not exist. However, among the examined encodings, the 84%-M1-M2-compensated encodings provided a suitable tradeoff.


Subject(s)
Diffusion Magnetic Resonance Imaging , Liver , Humans , Reproducibility of Results , Liver/diagnostic imaging , Liver/pathology , Diffusion Magnetic Resonance Imaging/methods , Acceleration , Magnetic Resonance Spectroscopy
2.
Z Med Phys ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37543450

ABSTRACT

PURPOSE: This research aims to develop a feature-guided deep learning approach and compare it with an optimized conventional post-processing algorithm in order to enhance the image quality of diffusion-weighted liver images and, in particular, to reduce the pulsation-induced signal loss occurring predominantly in the left liver lobe. METHODS: Data from 40 patients with liver lesions were used. For the conventional approach, the best-suited out of five examined algorithms was chosen. For the deep learning approach, a U-Net was trained. Instead of learning "gold-standard" target images, the network was trained to optimize four image features (lesion CNR, vessel darkness, data consistency, and pulsation artifact reduction), which could be assessed quantitatively using manually drawn ROIs. A quality score was calculated from these four features. As an additional quality assessment, three radiologists rated different features of the resulting images. RESULTS: The conventional approach could substantially increase the lesion CNR and reduce the pulsation-induced signal loss. However, the vessel darkness was reduced. The deep learning approach increased the lesion CNR and reduced the signal loss to a slightly lower extent, but it could additionally increase the vessel darkness. According to the image quality score, the quality of the deep-learning images was higher than that of the images obtained using the conventional approach. The radiologist ratings were mostly consistent with the quantitative scores, but the overall quality ratings differed among the readers. CONCLUSION: Unlike the conventional algorithm, the deep-learning algorithm increased the vessel darkness. Therefore, it may be a viable alternative to conventional algorithms.

3.
Magn Reson Med ; 90(1): 270-279, 2023 07.
Article in English | MEDLINE | ID: mdl-36861449

ABSTRACT

PURPOSE: Studies on intravoxel incoherent motion (IVIM) imaging in the liver have been carried out with different acquisition protocols. The number of acquired slices and the distances between slices can influence IVIM measurements due to saturation effects, but these effects have often been disregarded. This study investigated differences in biexponential IVIM parameters between two slice settings. METHODS: Fifteen healthy volunteers (21-30 years) were examined at a field strength of 3 T. Diffusion-weighted images of the abdomen were acquired with 16 b values (0-800 s/mm2 ), with four slices for the few slices setting and 24-27 slices for the many slices setting. Regions of interest were manually drawn in the liver. The data were fitted with a monoexponential signal curve and a biexponential IVIM curve, and biexponential IVIM parameters were determined. The dependence on the slice setting was assessed with Student's t test for paired samples (normally distributed IVIM parameters) and the Wilcoxon signed-rank test (non-normally distributed parameters). RESULTS: None of the parameters were significantly different between the settings. For few slices and many slices, respectively, the mean values (SDs) for D $$ D $$ were 1.21 µm 2 / ms $$ 1.21{\upmu \mathrm{m}}^2/\mathrm{ms} $$ ( 0.19 µm 2 / ms $$ 0.19\kern0.3em {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ) and 1.20 µm 2 / ms $$ 1.20{\upmu \mathrm{m}}^2/\mathrm{ms} $$ ( 0.11 µm 2 / ms $$ 0.11\kern0.3em {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ); for f $$ f $$ they were 29.7% (6.2%) and 27.7% (3.6%); and for D * $$ {D}^{\ast } $$ they were 8.76 ⋅ 10 - 2 mm 2 / s $$ 8.76\cdot {10}^{-2}{\mathrm{mm}}^2/\mathrm{s} $$ ( 4.54 ⋅ 10 - 2 mm 2 / s $$ 4.54\cdot {10}^{-2}\kern0.3em {\mathrm{mm}}^2/\mathrm{s} $$ ) and 8.71 ⋅ 10 - 2 mm 2 / s $$ 8.71\cdot {10}^{-2}{\mathrm{mm}}^2/\mathrm{s} $$ ( 4.06 ⋅ 10 - 2 mm 2 / s $$ 4.06\cdot {10}^{-2}\kern0.3em {\mathrm{mm}}^2/\mathrm{s} $$ ). CONCLUSION: Biexponential IVIM parameters in the liver are comparable among IVIM studies that use different slice settings, with mostly negligible saturation effects. However, this may not hold for studies that use much shorter TR.


Subject(s)
Abdomen , Liver , Humans , Liver/diagnostic imaging , Motion , Abdomen/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods
4.
Magn Reson Med ; 89(1): 423-439, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36089798

ABSTRACT

PURPOSE: To enhance image quality of flow-compensated diffusion-weighted liver MRI data by increasing the lesion conspicuity and reducing the cardiac pulsation artifact using postprocessing algorithms. METHODS: Diffusion-weighted image data of 40 patients with liver lesions had been acquired at 1.5 T. These data were postprocessed with 5 different algorithms (weighted averaging, p-mean, percentile, outlier exclusion, and exception set). Four image properties of the postprocessed data were evaluated for optimizing the algorithm parameters. These properties were the lesion to tissue contrast-to-noise ratio (CNR), the reduction of the cardiac pulsation artifact, the data consistency, and the vessel darkness. They were combined into a total quality score ( Q total , $$ {Q}_{\mathrm{total}}, $$ set to 1 for the trace-weighted reference image), which was used to rate the image quality objectively. RESULTS: The weighted averaging algorithm performed best according to the total quality score ( Q total = 1.111 ± 0.067 $$ {Q}_{\mathrm{total}}=1.111\pm 0.067 $$ ). The further ranking was outlier exclusion algorithm ( Q total = 1.086 ± 0.061 $$ {Q}_{\mathrm{total}}=1.086\pm 0.061 $$ ), p-mean algorithm ( Q total = 1.045 ± 0.049 $$ {Q}_{\mathrm{total}}=1.045\pm 0.049 $$ ), percentile algorithm ( Q total = 1.012 ± 0.049 $$ {Q}_{\mathrm{total}}=1.012\pm 0.049 $$ ), and exception set algorithm ( Q total = 0.957 ± 0.027 $$ {Q}_{\mathrm{total}}=0.957\pm 0.027 $$ ). All optimized algorithms except for the exception set algorithm corrected the pulsation artifact and increased the lesion CNR. Changes in Q total $$ {Q}_{\mathrm{total}} $$ were significant for all optimized algorithms except for the percentile algorithm. Liver ADC was significantly reduced (except for the exception set algorithm), particularly in the left lobe. CONCLUSION: Postprocessing algorithms should be used for flow-compensated liver DWI. The proposed weighted averaging algorithm seems to be suited best to increase the image quality of artifact-corrupted flow-compensated diffusion-weighted liver data.


Subject(s)
Algorithms , Artifacts , Humans , Diffusion Magnetic Resonance Imaging/methods , Diffusion , Liver/diagnostic imaging
5.
Magn Reson Med ; 88(6): 2679-2693, 2022 12.
Article in English | MEDLINE | ID: mdl-35916385

ABSTRACT

PURPOSE: To develop an algorithm for the retrospective correction of signal dropout artifacts in abdominal DWI resulting from cardiac motion. METHODS: Given a set of image repetitions for a slice, a locally adaptive weighted averaging is proposed that aims to suppress the contribution of image regions affected by signal dropouts. Corresponding weight maps were estimated by a sliding-window algorithm, which analyzed signal deviations from a patch-wise reference. In order to ensure the computation of a robust reference, repetitions were filtered by a classifier that was trained to detect images corrupted by signal dropouts. The proposed method, named Deep Learning-guided Adaptive Weighted Averaging (DLAWA), was evaluated in terms of dropout suppression capability, bias reduction in the ADC, and noise characteristics. RESULTS: In the case of uniform averaging, motion-related dropouts caused signal attenuation and ADC overestimation in parts of the liver, with the left lobe being affected particularly. Both effects could be substantially mitigated by DLAWA while preventing global penalties with respect to SNR due to local signal suppression. Performing evaluations on patient data, the capability to recover lesions concealed by signal dropouts was demonstrated as well. Further, DLAWA allowed for transparent control of the trade-off between SNR and signal dropout suppression by means of a few hyperparameters. CONCLUSION: This work presents an effective and flexible method for the local compensation of signal dropouts resulting from motion and pulsation. Because DLAWA follows a retrospective approach, no changes to the acquisition are required.


Subject(s)
Deep Learning , Diffusion Magnetic Resonance Imaging , Liver , Diffusion Magnetic Resonance Imaging/methods , Humans , Liver/diagnostic imaging , Motion , Retrospective Studies
6.
PLoS One ; 17(5): e0268843, 2022.
Article in English | MEDLINE | ID: mdl-35617260

ABSTRACT

Magnetic resonance (MR) diffusion-weighted imaging (DWI) is often used to detect focal liver lesions (FLLs), though DWI image quality can be limited in the left liver lobe owing to the pulsatile motion of the nearby heart. Flow-compensated (FloCo) diffusion encoding has been shown to reduce this pulsation artifact. The purpose of this prospective study was to intra-individually compare DWI of the liver acquired with conventional monopolar and FloCo diffusion encoding for assessing metastatic FLLs in non-cirrhotic patients. Forty patients with known or suspected multiple metastatic FLLs were included and measured at 1.5 T field strength with a conventional (monopolar) and a FloCo diffusion encoding EPI sequence (single refocused; b-values, 50 and 800 s/mm2). Two board-certified radiologists analyzed the DWI images independently. They issued Likert-scale ratings (1 = worst, 5 = best) for pulsation artifact severity and counted the difference of lesions visible at b = 800 s/mm² separately for small and large FLLs (i.e., < 1 cm or > 1 cm) and separately for left and right liver lobe. Differences between the two diffusion encodings were assessed with the Wilcoxon signed-rank test. Both readers found a reduction in pulsation artifact in the liver with FloCo encoding (p < 0.001 for both liver lobes). More small lesions were detected with FloCo diffusion encoding in both liver lobes (left lobe: six and seven additional lesions by readers 1 and 2, respectively; right lobe: five and seven additional lesions for readers 1 and 2, respectively). Both readers found one additional large lesion in the left liver lobe. Thus, flow-compensated diffusion encoding appears more effective than monopolar diffusion encoding for the detection of liver metastases.


Subject(s)
Liver Neoplasms , Diffusion Magnetic Resonance Imaging/methods , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Magnetic Resonance Imaging , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity
7.
Magn Reson Med ; 87(2): 859-871, 2022 02.
Article in English | MEDLINE | ID: mdl-34453445

ABSTRACT

PURPOSE: Intravoxel incoherent motion (IVIM) studies are performed with different acquisition protocols. Comparing them requires knowledge of echo time (TE) dependencies. The TE-dependence of the biexponential perfusion fraction f is well-documented, unlike that of its triexponential counterparts f1 and f2 and the biexponential and triexponential pseudodiffusion coefficients D* , D1∗ , and D2∗ . The purpose was to investigate the TE-dependence of these parameters and to check whether the triexponential pseudodiffusion compartments are associated with arterial and venous blood. METHODS: Fifteen healthy volunteers (19-58 y; mean: 24.7 y) underwent diffusion-weighted imaging of the abdomen with 24 b-values (0.2-800 s/mm2 ) at TEs of 45, 60, 75, and 90 ms. Regions of interest (ROIs) were manually drawn in the liver. One set of bi- and triexponential IVIM parameters per volunteer and TE was determined. The TE-dependence was assessed with the Kruskal-Wallis test. RESULTS: TE-dependence was observed for f (P < .001), f1 (P = .001), and f2 (P < .001). Their median values at the four measured TEs were: f: 0.198/0.240/0.274/0.359, f1 : 0.113/0.139/0.146/0.205, f2 : 0.115/0.155/0.182/0.194. D, D* , D1∗ , and D2∗ showed no significant TE-dependence. Their values were: diffusion coefficient D (10-4 mm2 /s): 9.45/9.63/9.75/9.41, biexponential D* (10-2 mm2 /s): 5.26/5.52/6.13/5.82, triexponential D1∗ (10-2 mm2 /s): 1.73/2.91/2.25/2.51, triexponential D2∗ (mm2 /s): 0.478/1.385/0.616/0.846. CONCLUSION: f1 and f2 show similar TE-dependence as f, ie, increase with rising TE; an effect that must be accounted for when comparing different studies. The diffusion and pseudodiffusion coefficients might be compared without TE correction. Because of the similar TE-dependence of f1 and f2 , the triexponential pseudodiffusion compartments are most probably not associated to venous and arterial blood.


Subject(s)
Algorithms , Diffusion Magnetic Resonance Imaging , Abdomen , Humans , Liver/diagnostic imaging , Motion , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...