Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 15(4): e0211423, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38470050

ABSTRACT

Multidrug-resistant bacteria such as the opportunistic pathogen Pseudomonas aeruginosa, which causes life-threatening infections especially in immunocompromised individuals and cystic fibrosis patients, pose an increasing threat to public health. In the search for new treatment options, P. aeruginosa uridine diphosphate-glucose pyrophosphorylase (PaUGP) has been proposed as a novel drug target because it is required for the biosynthesis of important virulence factors and linked to pathogenicity in animal models. Here, we show that UGP-deficient P. aeruginosa exhibits severely reduced virulence against human lung tissue and cells, emphasizing the enzyme's suitability as a drug target. To establish a basis for the development of selective PaUGP inhibitors, we solved the product-bound crystal structure of tetrameric PaUGP and conducted a comprehensive structure-function analysis, identifying key residues at two different molecular interfaces that are essential for tetramer integrity and catalytic activity and demonstrating that tetramerization is pivotal for PaUGP function. Importantly, we show that part of the PaUGP oligomerization interface is uniquely conserved across bacterial UGPs but does not exist in the human enzyme, therefore representing an allosteric site that may be targeted to selectively inhibit bacterial UGPs.IMPORTANCEInfections with the opportunistic bacterial pathogen Pseudomonas aeruginosa are becoming increasingly difficult to treat due to multidrug resistance. Here, we show that the enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) is involved in P. aeruginosa virulence toward human lung tissue and cells, making it a potential target for the development of new antibacterial drugs. Our exploration of P. aeruginosa (Pa)UGP structure-function relationships reveals that the activity of PaUGP depends on the formation of a tetrameric enzyme complex. We found that a molecular interface involved in tetramer formation is conserved in all bacterial UGPs but not in the human enzyme, and therefore hypothesize that it provides an ideal point of attack to selectively inhibit bacterial UGPs and exploit them as drug targets.


Subject(s)
Pseudomonas Infections , Virulence Factors , Animals , Humans , Virulence Factors/genetics , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Glucose , Uridine Diphosphate
2.
mBio ; 12(3): e0089721, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34076489

ABSTRACT

Capsule polymers are crucial virulence factors of pathogenic bacteria and are used as antigens in glycoconjugate vaccine formulations. Some Gram-negative pathogens express poly(glycosylglycerol phosphate) capsule polymers that resemble Gram-positive wall teichoic acids and are synthesized by TagF-like capsule polymerases. So far, the biotechnological use of these enzymes for vaccine developmental studies was restricted by the unavailability of enantiopure CDP-glycerol, one of the donor substrates required for polymer assembly. Here, we use CTP:glycerol-phosphate cytidylyltransferases (GCTs) and TagF-like polymerases to synthesize the poly(glycosylglycerol phosphate) capsule polymer backbones of the porcine pathogen Actinobacillus pleuropneumoniae, serotypes 3 and 7 (App3 and App7). GCT activity was confirmed by high-performance liquid chromatography, and polymers were analyzed using comprehensive nuclear magnetic resonance studies. Solid-phase synthesis protocols were established to allow potential scale-up of polymer production. In addition, one-pot reactions exploiting glycerol-kinase allowed us to start the reaction from inexpensive, widely available substrates. Finally, this study highlights that multidomain TagF-like polymerases can be transformed by mutagenesis of active site residues into single-action transferases, which in turn can act in trans to build-up structurally new polymers. Overall, our protocols provide enantiopure, nature-identical capsule polymer backbones from App2, App3, App7, App9, and App11, Neisseria meningitidis serogroup H, and Bibersteinia trehalosi serotypes T3 and T15. IMPORTANCE Economic synthesis platforms for the production of animal vaccines could help reduce the overuse and misuse of antibiotics in animal husbandry, which contributes greatly to the increase of antibiotic resistance. Here, we describe a highly versatile, easy-to-use mix-and-match toolbox for the generation of glycerol-phosphate-containing capsule polymers that can serve as antigens in glycoconjugate vaccines against Actinobacillus pleuropneumoniae and Bibersteinia trehalosi, two pathogens causing considerable economic loss in the swine, sheep, and cattle industries. We have established scalable protocols for the exploitation of a versatile enzymatic cascade with modular architecture, starting with the preparative-scale production of enantiopure CDP-glycerol, a precursor for a multitude of bacterial surface structures. Thereby, our approach not only allows the synthesis of capsule polymers but might also be exploitable for the (chemo)enzymatic synthesis of other glycerol-phosphate-containing structures such as Gram-positive wall teichoic acids or lipoteichoic acids.


Subject(s)
Actinobacillus pleuropneumoniae/chemistry , Bacterial Capsules/chemistry , Glycerophosphates/biosynthesis , Neisseria meningitidis/chemistry , Pasteurellaceae/chemistry , Polymers/chemistry , Actinobacillus pleuropneumoniae/pathogenicity , Animals , Bacterial Vaccines/chemistry , Cattle , Glycerophosphates/analysis , Glycerophosphates/metabolism , Sheep , Swine
3.
Nat Commun ; 11(1): 4723, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948778

ABSTRACT

O-Acetylation of the capsular polysaccharide (CPS) of Neisseria meningitidis serogroup A (NmA) is critical for the induction of functional immune responses, making this modification mandatory for CPS-based anti-NmA vaccines. Using comprehensive NMR studies, we demonstrate that O-acetylation stabilizes the labile anomeric phosphodiester-linkages of the NmA-CPS and occurs in position C3 and C4 of the N-acetylmannosamine units due to enzymatic transfer and non-enzymatic ester migration, respectively. To shed light on the enzymatic transfer mechanism, we solved the crystal structure of the capsule O-acetyltransferase CsaC in its apo and acceptor-bound form and of the CsaC-H228A mutant as trapped acetyl-enzyme adduct in complex with CoA. Together with the results of a comprehensive mutagenesis study, the reported structures explain the strict regioselectivity of CsaC and provide insight into the catalytic mechanism, which relies on an unexpected Gln-extension of a classical Ser-His-Asp triad, embedded in an α/ß-hydrolase fold.


Subject(s)
Bacterial Capsules/chemistry , Bacterial Capsules/metabolism , Neisseria meningitidis, Serogroup A/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Acetylation , Acetyltransferases , Antibodies, Bacterial , Bacterial Capsules/genetics , Bacterial Capsules/immunology , Bacterial Vaccines/immunology , Hexosamines , Models, Molecular , Neisseria meningitidis, Serogroup A/genetics , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/immunology , Protein Conformation
4.
J Biol Chem ; 295(17): 5771-5784, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32152227

ABSTRACT

Actinobacillus pleuropneumoniae (App) is the etiological agent of acute porcine pneumonia and responsible for severe economic losses worldwide. The capsule polymer of App serotype 1 (App1) consists of [4)-GlcNAc-ß(1,6)-Gal-α-1-(PO4-] repeating units that are O-acetylated at O-6 of the GlcNAc. It is a major virulence factor and was used in previous studies in the successful generation of an experimental glycoconjugate vaccine. However, the application of glycoconjugate vaccines in the animal health sector is limited, presumably because of the high costs associated with harvesting the polymer from pathogen culture. Consequently, here we exploited the capsule polymerase Cps1B of App1 as an in vitro synthesis tool and an alternative for capsule polymer provision. Cps1B consists of two catalytic domains, as well as a domain rich in tetratricopeptide repeats (TPRs). We compared the elongation mechanism of Cps1B with that of a ΔTPR truncation (Cps1B-ΔTPR). Interestingly, the product profiles displayed by Cps1B suggested processive elongation of the nascent polymer, whereas Cps1B-ΔTPR appeared to work in a more distributive manner. The dispersity of the synthesized products could be reduced by generating single-action transferases and immobilizing them on individual columns, separating the two catalytic activities. Furthermore, we identified the O-acetyltransferase Cps1D of App1 and used it to modify the polymers produced by Cps1B. Two-dimensional NMR analyses of the products revealed O-acetylation levels identical to those of polymer harvested from App1 culture supernatants. In conclusion, we have established a protocol for the pathogen-free in vitro synthesis of tailored, nature-identical App1 capsule polymers.


Subject(s)
Actinobacillus Infections/microbiology , Actinobacillus pleuropneumoniae/chemistry , Actinobacillus pleuropneumoniae/enzymology , Bacterial Capsules/chemistry , Oligosaccharides/chemistry , Actinobacillus pleuropneumoniae/metabolism , Bacterial Capsules/enzymology , Bacterial Capsules/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chemistry Techniques, Synthetic , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Oligosaccharides/chemical synthesis , Oligosaccharides/metabolism
5.
Molecules ; 24(5)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30871023

ABSTRACT

Leishmaniasis is a neglected disease that is caused by different species of the protozoan parasite Leishmania, and it currently affects 12 million people worldwide. The antileishmanial therapeutic arsenal remains very limited in number and efficacy, and there is no vaccine for this parasitic disease. One pathway that has been genetically validated as an antileishmanial drug target is the biosynthesis of uridine diphosphate-glucose (UDP-Glc), and its direct derivative UDP-galactose (UDP-Gal). De novo biosynthesis of these two nucleotide sugars is controlled by the specific UDP-glucose pyrophosphorylase (UGP). Leishmania parasites additionally express a UDP-sugar pyrophosphorylase (USP) responsible for monosaccharides salvage that is able to generate both UDP-Gal and UDP-Glc. The inactivation of the two parasite pyrophosphorylases UGP and USP, results in parasite death. The present study reports on the identification of structurally diverse scaffolds for the development of USP inhibitors by fragment library screening. Based on this screening, we selected a small set of commercially available compounds, and identified molecules that inhibit both Leishmania major USP and UGP, with a half-maximal inhibitory concentration in the 100 µM range. The inhibitors were predicted to bind at allosteric regulation sites, which were validated by mutagenesis studies. This study sets the stage for the development of potent USP inhibitors.


Subject(s)
Leishmania major/drug effects , Small Molecule Libraries/chemistry , UTP-Glucose-1-Phosphate Uridylyltransferase/antagonists & inhibitors , Biosensing Techniques , Drug Discovery , Drug Evaluation, Preclinical , Humans , Kinetics , Molecular Docking Simulation , Uridine Diphosphate Sugars
6.
Sci Rep ; 5: 9618, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25860585

ABSTRACT

In mammals, UDP-glucose pyrophosphorylase (UGP) is the only enzyme capable of activating glucose-1-phosphate (Glc-1-P) to UDP-glucose (UDP-Glc), a metabolite located at the intersection of virtually all metabolic pathways in the mammalian cell. Despite the essential role of its product, the molecular basis of UGP function is poorly understood. Here we report the crystal structure of human UGP in complex with its product UDP-Glc. Beyond providing first insight into the active site architecture, we describe the substrate binding mode and intermolecular interactions in the octameric enzyme that are crucial to its activity. Importantly, the quaternary mechanism identified for human UGP in this study may be common for oligomeric sugar-activating nucleotidyltransferases. Elucidating such mechanisms is essential for understanding nucleotide sugar metabolism and opens the perspective for the development of drugs that specifically inhibit simpler organized nucleotidyltransferases in pathogens.


Subject(s)
Protein Multimerization , UTP-Glucose-1-Phosphate Uridylyltransferase/chemistry , UTP-Glucose-1-Phosphate Uridylyltransferase/metabolism , Amino Acid Sequence , Animals , Catalytic Domain , Glucose/chemistry , Glucose/metabolism , Humans , Metabolic Networks and Pathways , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Mutation , Protein Binding , Protein Stability , Protein Subunits , Structure-Activity Relationship , Substrate Specificity , Thermodynamics , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics , Uridine Diphosphate Glucose/chemistry , Uridine Diphosphate Glucose/metabolism
7.
Glycobiology ; 23(4): 426-37, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23254995

ABSTRACT

Uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central position in carbohydrate metabolism in all kingdoms of life, since its product uridine diphosphate-glucose (UDP-glucose) is essential in a number of anabolic and catabolic pathways and is a precursor for other sugar nucleotides. Its significance as a virulence factor in protists and bacteria has given momentum to the search for species-specific inhibitors. These attempts are, however, hampered by high structural conservation of the active site architecture. A feature that discriminates UGPs of different species is the quaternary organization. While UGPs in protists are monomers, di- and tetrameric forms exist in bacteria, and crystal structures obtained for the enzyme from yeast and human identified octameric UGPs. These octamers are formed by contacts between highly conserved amino acids in the C-terminal ß-helix. Still under debate is the question whether octamerization is required for the functionality of the human enzyme. Here, we used single amino acid replacements in the C-terminal ß-helix to interrogate the impact of highly conserved residues on octamer formation and functional activity of human UGP (hUGP). Replacements were guided by the sequence of Arabidopsis thaliana UGP, known to be active as a monomer. Correlating the data obtained in blue native PAGE, size exclusion chromatography and enzymatic activity testing, we prove that the octamer is the active enzyme form. This new insight into structure-function relationships in hUGP does not only improve the understanding of the catalysis of this important enzyme, but in addition broadens the basis for studies aimed at designing drugs that selectively inhibit UGPs from pathogens.


Subject(s)
Catalytic Domain , Protein Multimerization , UTP-Glucose-1-Phosphate Uridylyltransferase/chemistry , Arabidopsis/enzymology , Conserved Sequence , Humans , Mutation , UTP-Glucose-1-Phosphate Uridylyltransferase/genetics
8.
J Biol Chem ; 285(2): 878-87, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-19906649

ABSTRACT

The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the environment has been demonstrated for Leishmania major. Here, we present the characterization of an L. major UDP-sugar pyrophosphorylase able to reversibly activate galactose 1-phosphate into UDP-galactose thus proving the existence of the Isselbacher salvage pathway in this parasite. The ordered bisubstrate mechanism and high affinity of the enzyme for UTP seem to favor the synthesis of nucleotide sugar rather than their pyrophosphorolysis. Although L. major UDP-sugar pyrophosphorylase preferentially activates galactose 1-phosphate and glucose 1-phosphate, the enzyme is able to act on a variety of hexose 1-phosphates as well as pentose 1-phosphates but not hexosamine 1-phosphates and hence presents a broad in vitro specificity. The newly identified enzyme exhibits a low but significant homology with UDP-glucose pyrophosphorylases and conserved in particular is the pyrophosphorylase consensus sequence and residues involved in nucleotide and phosphate binding. Saturation transfer difference NMR spectroscopy experiments confirm the importance of these moieties for substrate binding. The described leishmanial enzyme is closely related to plant UDP-sugar pyrophosphorylases and presents a similar substrate specificity suggesting their common origin.


Subject(s)
Galactosephosphates/metabolism , Leishmania major/enzymology , Nucleotidyltransferases/metabolism , Protozoan Proteins/metabolism , Uridine Diphosphate/metabolism , Amino Acid Sequence , Animals , Evolution, Molecular , Galactosephosphates/genetics , Glucosephosphates/genetics , Glucosephosphates/metabolism , Glycocalyx/enzymology , Glycocalyx/genetics , Leishmania major/genetics , Molecular Sequence Data , Nucleotidyltransferases/genetics , Protozoan Proteins/genetics , Substrate Specificity/physiology , Uridine Diphosphate/genetics , Uridine Triphosphate/genetics , Uridine Triphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...