Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 337: 122137, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710567

ABSTRACT

Xylans' unique properties make it attractive for a variety of industries, including paper, food, and biochemical production. While for some applications the preservation of its natural structure is crucial, for others the degradation into monosaccharides is essential. For the complete breakdown, the use of several enzymes is required, due to its structural complexity. In fact, the specificity of enzymatically-catalyzed reactions is guided by the surface, limiting or regulating accessibility and serving structurally encoded input guiding the actions of the enzymes. Here, we investigate enzymes at surfaces rich in xylan using surface plasmon resonance spectroscopy. The influence of diffusion and changes in substrate morphology is studied via enzyme surface kinetics simulations, yielding reaction rates and constants. We propose kinetic models, which can be applied to the degradation of multilayer biopolymer films. The most advanced model was verified by its successful application to the degradation of a thin film of polyhydroxybutyrate treated with a polyhydroxybutyrate-depolymerase. The herein derived models can be employed to quantify the degradation kinetics of various enzymes on biopolymers in heterogeneous environments, often prevalent in industrial processes. The identification of key factors influencing reaction rates such as inhibition will contribute to the quantification of intricate dynamics in complex systems.


Subject(s)
Surface Plasmon Resonance , Xylans , Xylans/chemistry , Xylans/metabolism , Surface Plasmon Resonance/methods , Kinetics , Surface Properties
2.
Monatsh Chem ; 154(12): 1369-1381, 2023.
Article in English | MEDLINE | ID: mdl-38020486

ABSTRACT

Perylene monoimide based electron acceptors have great properties for use in organic solar cells, like thermal stability, strong absorption, and simple synthesis. However, they typically exhibit low values for the dielectric permittivity. This hinders efficient exciton dissociation, limiting the achievable power conversion efficiencies. In this work, we present the synthesis and utilization of two new acceptor-donor-acceptor (A-D-A) molecules, comprising perylene monoimide as electron withdrawing A unit. Oligo ethylene glycol side chain modified carbazole (PMI-[C-OEG]) and fluorene (PMI-[F-OEG]) linkers were used as electron rich D units, respectively. The polar side chains are expected to increase the polarizability of the molecules and, thus, their permittivity according to the Clausius-Mossotti relationship. We found that the incorporation of glycol chains improved the dielectric properties of both materials in comparison to the reference compounds with alkyl chains. The permittivity increased by 18% from 3.17 to 3.75 for the carbazole-based non-fullerene acceptor PMI-[C-OEG] and by 12% from 3.10 to 3.47 for the fluorene-based acceptor PMI-[F-OEG]. The fabricated solar cells revealed power conversion efficiencies of 3.71 ± 0.20% (record 3.92%) with PMI-[C-OEG], and 1.21 ± 0.06% (record 1.51%) with PMI-[F-OEG]. Supplementary Information: The online version contains supplementary material available at 10.1007/s00706-022-02956-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...