Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23944415

ABSTRACT

The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 1): 031122, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23030881

ABSTRACT

We study, both analytically and numerically, the Boltzmann transport equation for the Hubbard chain with nearest-neighbor hopping and spatially homogeneous initial condition. The time-dependent Wigner function is matrix-valued because of spin. The H theorem holds. The nearest-neighbor chain is integrable, which, on the kinetic level, is reflected by infinitely many additional conservation laws and linked to the fact that there are also nonthermal stationary states. We characterize all stationary solutions. Numerically, we observe an exponentially fast convergence to stationarity and investigate the convergence rate in dependence on the initial conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...