Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 984
Filter
1.
Npj Imaging ; 2(1): 15, 2024.
Article in English | MEDLINE | ID: mdl-38962496

ABSTRACT

Batch effects (BEs) refer to systematic technical differences in data collection unrelated to biological variations whose noise is shown to negatively impact machine learning (ML) model generalizability. Here we release CohortFinder (http://cohortfinder.com), an open-source tool aimed at mitigating BEs via data-driven cohort partitioning. We demonstrate CohortFinder improves ML model performance in downstream digital pathology and medical image processing tasks. CohortFinder is freely available for download at cohortfinder.com.

2.
Ann Intern Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38950402

ABSTRACT

BACKGROUND: In patients with advanced chronic kidney disease (CKD), the effects of initiating treatment with an angiotensin-converting enzyme inhibitor (ACEi) or angiotensin-receptor blocker (ARB) on the risk for kidney failure with replacement therapy (KFRT) and death remain unclear. PURPOSE: To examine the association of ACEi or ARB treatment initiation, relative to a non-ACEi or ARB comparator, with rates of KFRT and death. DATA SOURCES: Ovid Medline and the Chronic Kidney Disease Epidemiology Collaboration Clinical Trials Consortium from 1946 through 31 December 2023. STUDY SELECTION: Completed randomized controlled trials testing either an ACEi or an ARB versus a comparator (placebo or antihypertensive drugs other than ACEi or ARB) that included patients with a baseline estimated glomerular filtration rate (eGFR) below 30 mL/min/1.73 m2. DATA EXTRACTION: The primary outcome was KFRT, and the secondary outcome was death before KFRT. Analyses were done using Cox proportional hazards models according to the intention-to-treat principle. Prespecified subgroup analyses were done according to baseline age (<65 vs. ≥65 years), eGFR (<20 vs. ≥20 mL/min/1.73 m2), albuminuria (urine albumin-creatinine ratio <300 vs. ≥300 mg/g), and history of diabetes. DATA SYNTHESIS: A total of 1739 participants from 18 trials were included, with a mean age of 54.9 years and mean eGFR of 22.2 mL/min/1.73 m2, of whom 624 (35.9%) developed KFRT and 133 (7.6%) died during a median follow-up of 34 months (IQR, 19 to 40 months). Overall, ACEi or ARB treatment initiation led to lower risk for KFRT (adjusted hazard ratio, 0.66 [95% CI, 0.55 to 0.79]) but not death (hazard ratio, 0.86 [CI, 0.58 to 1.28]). There was no statistically significant interaction between ACEi or ARB treatment and age, eGFR, albuminuria, or diabetes (P for interaction > 0.05 for all). LIMITATION: Individual participant-level data for hyperkalemia or acute kidney injury were not available. CONCLUSION: Initiation of ACEi or ARB therapy protects against KFRT, but not death, in people with advanced CKD. PRIMARY FUNDING SOURCE: National Institutes of Health. (PROSPERO: CRD42022307589).

3.
J Am Heart Assoc ; : e034915, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979821

ABSTRACT

BACKGROUND: The accurate selection of patients likely to respond to renal denervation (RDN) is crucial for optimizing treatment outcomes in patients with hypertension. This systematic review was designed to evaluate patient-specific factors predicting the RDN response. METHODS AND RESULTS: We focused on individuals with hypertension who underwent RDN. Patients were categorized based on their baseline characteristics. The primary outcome was blood pressure (BP) reduction after RDN. Both randomized controlled trials and nonrandomized studies were included. We assessed the risk of bias using corresponding tools and further employed the Grading of Recommendations Assessment, Development, and Evaluation approach to assess the overall quality of evidence. A total of 50 studies were ultimately included in this systematic review, among which 17 studies were for meta-analysis. Higher baseline heart rate and lower pulse wave velocity were shown to be associated with significant antihypertensive efficacy of RDN on 24-hour systolic BP reduction (weighted mean difference, -4.05 [95% CI, -7.33 to -0.77]; weighted mean difference, -7.20 [95% CI, -9.79 to -4.62], respectively). In addition, based on qualitative analysis, higher baseline BP, orthostatic hypertension, impaired baroreflex sensitivity, and several biomarkers are also reported to be associated with significant BP reduction after RDN. CONCLUSIONS: In patients with hypertension treated with the RDN, higher heart rate, and lower pulse wave velocity were associated with significant BP reduction after RDN. Other factors, including higher baseline BP, hypertensive patients with orthostatic hypertension, BP variability, impaired cardiac baroreflex sensitivity, and some biomarkers are also reported to be associated with a better BP response to RDN.

4.
J Am Soc Nephrol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889197

ABSTRACT

BACKGROUND: Declines in glomerular filtration rate (GFR) occur commonly when renin-angiotensin system (RAS) inhibitors are started. Our objective was to determine the relation between declines in estimated GFR during trials of RAS inhibition and kidney outcomes. METHODS: We included participants with CKD (estimated GFR<60 mL/min/1.73m2) from 16 trials of RAS inhibition. The exposure was subacute declines in estimated GFR expressed as % change between randomization and month 3, and in the subset of trials with data available, we also examined % change in eGFR between randomization and month 1. The primary outcome was kidney failure with replacement therapy. Cox proportional hazards models were used to examine the association between subacute declines in eGFR and risk of kidney failure. We used spline models to identify the threshold of change in eGFR below which RAS inhibition was favorable (conservatively comparing a given decline in eGFR with RAS inhibition to no decline in the comparator). RESULTS: 11,800 individuals with mean eGFR 43 (SD 11) mL/min/1.73m2 and median urine albumin/creatinine ratio of 362 mg/g (IQR 50, 1367) were included, and 1,162 (10%) developed kidney failure. The threshold of decline in eGFR that favored use of RAS inhibitors for kidney failure was estimated to be up to 13% (95%CI 8%, 17%) over a 3-month interval and up to 21% (95%CI 15%, 27%) over a 1-month interval after starting RAS inhibitors. CONCLUSIONS: In people treated with RAS inhibitors, ≤ 13% decline in eGFR over a 3-month period or ≤21% decline over a 1-month period was associated with lower risk of kidney failure compared with no decline with the use of placebo or other agents.

5.
Sci Total Environ ; 942: 173684, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38844233

ABSTRACT

Lake Taihu, an inland lake, frequently experiences Cyanobacterial blooms that have historically posed severe threats to its aquatic ecosystem. Combining field observations and satellite remote-sensed data, factors that influence algal bloom intensity in Lake Taihu over an eight-year period, from 2016 to 2023, are examined, and changes in phytoplankton community composition, climate, water quality, economic activities, and food web dynamics are reported. Sentinel-2 MSI data analysis reveals a dramatic decrease in Cyanobacterial blooms in 2023, with a reduction in the annual maximum bloom area of 76.90 % from 2016 values. From 2016 to 2022, the ratio of Cyanobacteria to other phytoplankton ranged 82.09 %-98.29 %, but in 2023, this dropped to 60.98 %. Concurrently, Cyanobacteria density dropped to an historic low of 2.29 × 107 cells/L (16.4 % of 2021 peak values). Redundancy and random forest analyses indicated that nitrogen has a greater influence on phytoplankton than phosphorus, with temperature and permanganate index being the important parameters to affect phytoplankton community structure. We attribute the decrease in Cyanobacterial blooms in Lake Taihu in 2023 to be largely caused by shifts in phytoplankton community structure, particularly the sharp decline in Microcystis sp. density, a genus often linked to bloom formation. Meteorological conditions such as reduced rainfall and wind speed during the winter and spring of 2023 also contributed to diminishing Cyanobacterial blooms. Ongoing improvements in water quality, reduced economic activities because of pandemic restrictions, and implementation of a fishing ban since 2020 have likely further contributed to reductions in bloom frequency. These results improve our understanding of the processes that affect algal blooms in Lake Taihu, and potentially other eutrophic inland lakes.


Subject(s)
Cyanobacteria , Environmental Monitoring , Eutrophication , Lakes , Phytoplankton , Lakes/microbiology , Lakes/chemistry , Cyanobacteria/growth & development , China , Seasons , Water Quality
6.
Biochem Pharmacol ; 226: 116341, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848778

ABSTRACT

Maximizing treatment efficacy and forecasting patient prognosis in cancer necessitates the strategic use of targeted therapy, coupled with the prompt precise detection of malignant tumors. Theutilizationof gaseous systems as an adaptable platform for creating nanobubbles (NBs) has garnered significant attention as theranostics, which involve combining contrast chemicals typically used for imaging with pharmaceuticals to diagnose and treattumorssynergistically in apersonalizedmanner for each patient. This review specifically examines the utilization of oxygen NBsplatforms as a theranostic weapon in the field of oncology. We thoroughly examine the key factors that impact the effectiveness of NBs preparations and the consequences of these treatment methods. This review extensively examines recent advancements in composition schemes, advanced developments in pre-clinical phases, and other groundbreaking inventions in the area of NBs. Moreover, this review offers a thorough examination of the optimistic future possibilities, addressing prospective methods for improvement and incorporation into widely accepted therapeutic practices. As we explore the ever-changing field of cancer theranostics, the incorporation of oxygen NBs appears as a promising development, providing new opportunities for precision medicine and marking a revolutionary age in cancer research and therapy.

7.
Int J Biol Sci ; 20(8): 3185-3200, 2024.
Article in English | MEDLINE | ID: mdl-38904026

ABSTRACT

N6-methyladenosine (m6A) methylation plays a crucial role in various biological processes and the pathogenesis of human diseases. However, its role and mechanism in kidney fibrosis remain elusive. In this study, we show that the overall level of m6A methylated RNA was upregulated and the m6A methyltransferase METTL3 was induced in kidney tubular epithelial cells in mouse models and human kidney biopsies of chronic kidney disease (CKD). Proximal tubule-specific knockout of METTL3 in mice protected kidneys against developing fibrotic lesions after injury. Conversely, overexpression of METTL3 aggravated kidney fibrosis in vivo. Through bioinformatics analysis and experimental validation, we identified ß-catenin mRNA as a major target of METTL3-mediated m6A modification, which could be recognized by a specific m6A reader, the insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3). METTL3 stabilized ß-catenin mRNA, increased ß-catenin protein and induced its downstream profibrotic genes, whereas either knockdown of IGF2BP3 or inhibiting ß-catenin signaling abolished its effects. Collectively, these results indicate that METTL3 promotes kidney fibrosis by stimulating the m6A modification of ß-catenin mRNA, leading to its stabilization and its downstream profibrotic genes expression. Our findings suggest that targeting METTL3/IGF2BP3/ß-catenin pathway may be a novel strategy for the treatment of fibrotic CKD.


Subject(s)
Fibrosis , Methyltransferases , beta Catenin , beta Catenin/metabolism , Animals , Mice , Fibrosis/metabolism , Humans , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , Signal Transduction , Adenosine/analogs & derivatives , Adenosine/metabolism , Kidney/metabolism , Kidney/pathology , Male , Mice, Inbred C57BL , Up-Regulation , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Mice, Knockout , RNA Methylation
8.
NPJ Digit Med ; 7(1): 164, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902336

ABSTRACT

The discovery of patterns associated with diagnosis, prognosis, and therapy response in digital pathology images often requires intractable labeling of large quantities of histological objects. Here we release an open-source labeling tool, PatchSorter, which integrates deep learning with an intuitive web interface. Using >100,000 objects, we demonstrate a >7x improvement in labels per second over unaided labeling, with minimal impact on labeling accuracy, thus enabling high-throughput labeling of large datasets.

9.
Signal Transduct Target Ther ; 9(1): 154, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844816

ABSTRACT

Early insulin therapy is capable to achieve glycemic control and restore ß-cell function in newly diagnosed type 2 diabetes (T2D), but its effect on cardiovascular outcomes in these patients remains unclear. In this nationwide real-world study, we analyzed electronic health record data from 19 medical centers across China between 1 January 2000, and 26 May 2022. We included 5424 eligible patients (mean age 56 years, 2176 women/3248 men) who were diagnosed T2D within six months and did not have prior cardiovascular disease. Multivariable Cox regression models were used to estimate the associations of early insulin therapy (defined as the first-line therapy for at least two weeks in newly diagnosed T2D patients) with the incidence of major cardiovascular events including coronary heart disease (CHD), stroke, and hospitalization for heart failure (HF). During 17,158 persons years of observation, we documented 834 incident CHD cases, 719 stroke cases, and 230 hospitalized cases for HF. Newly diagnosed T2D patients who received early insulin therapy, compared with those who did not receive such treatment, had 31% lower risk of incident stroke, and 28% lower risk of hospitalization for HF. No significant difference in the risk of CHD was observed. We found similar results when repeating the aforesaid analysis in a propensity-score matched population of 4578 patients and with inverse probability of treatment weighting models. These findings suggest that early insulin therapy in newly diagnosed T2D may have cardiovascular benefits by reducing the risk of incident stroke and hospitalization for HF.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Female , Male , Middle Aged , Insulin/therapeutic use , Incidence , Aged , China/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/drug therapy , Hypoglycemic Agents/therapeutic use , Adult , Stroke/epidemiology , Stroke/drug therapy
10.
Opt Lett ; 49(11): 3002-3005, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824313

ABSTRACT

In this Letter, we report and experimentally demonstrate what is to our knowledge a novel scheme for imprinting polarization gratings (PGs) with a pair of templates. Compared with the traditional method that a single template can only imprint PG with a single period, cascading two templates can control the period of imprinted PG at will. However, the low diffraction efficiency is inevitably caused by cascading two templates. Therefore, a rigorous coupled wave analysis (RCWA) is adopted to design a multi-twisted template to address this challenge. As a proof of concept, two multi-twisted templates with a period of 1.6 µm were fabricated, and PGs with a large period range from 0.4 to 48.6 µm were successfully imprinted. The proposed scheme is expected to enable rapid, robust, and high-quality mass production of beam steering, large-angle deflectors, and diffractive optical couplers.

11.
Redox Biol ; 74: 103225, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875957

ABSTRACT

Acute kidney injury (AKI) is in high prevalence worldwide but with no therapeutic strategies. Programmed cell death in tubular epithelial cells has been reported to accelerate a variety of AKI, but the major pathways and underlying mechanisms are not defined. Herein, we identified that pyroptosis was responsible for AKI progression and related to ATP depletion in renal tubular cells. We found that FAM3A, a mitochondrial protein that assists ATP synthesis, was decreased and negatively correlated with tubular cell injury and pyroptosis in both mice and patients with AKI. Knockout of FAM3A worsened kidney function decline, increased macrophage and neutrophil cell infiltration, and facilitated tubular cell pyroptosis in ischemia/reperfusion injury model. Conversely, FAM3A overexpression alleviated tubular cell pyroptosis, and inhibited kidney injury in ischemic AKI. Mechanistically, FAM3A promoted PI3K/AKT/NRF2 signaling, thus blocking mitochondrial reactive oxygen species (mt-ROS) accumulation. NLRP3 inflammasome sensed the overload of mt-ROS and then activated Caspase-1, which cleaved GSDMD, pro-IL-1ß, and pro-IL-18 into their mature forms to mediate pyroptosis. Of interest, NRF2 activator alleviated the pro-pyroptotic effects of FAM3A depletion, whereas the deletion of NRF2 blocked the anti-pyroptotic function of FAM3A. Thus, our study provides new mechanisms for AKI progression and demonstrates that FAM3A is a potential therapeutic target for treating AKI.


Subject(s)
Acute Kidney Injury , Kidney Tubules , Pyroptosis , Reactive Oxygen Species , Animals , Humans , Male , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Cytokines , Disease Models, Animal , Inflammasomes/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Reactive Oxygen Species/metabolism , Signal Transduction
12.
Neurochem Res ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916813

ABSTRACT

Dysfunction of Schwann cells, including cell apoptosis, autophagy inhibition, dedifferentiation, and pyroptosis, is a pivotal pathogenic factor in induced diabetic peripheral neuropathy (DPN). Histone deacetylases (HDACs) are an important family of proteins that epigenetically regulate gene transcription by affecting chromatin dynamics. Here, we explored the effect of HDAC1 on high glucose-cultured Schwann cells. HDAC1 expression was increased in diabetic mice and high glucose-cultured RSC96 cells, accompanied by cell apoptosis. High glucose also increased the mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved caspase-9/caspase-9 ratios and decreased endoplasmic reticulum response-related GRP78, CHOP, and ATF4 expression in RSC96 cells (P < 0.05). Furthermore, overexpression of HDAC1 increased the ratios of Bax/Bcl-2, cleaved caspase-9/caspase-9, and cleaved caspase-3 and reduced the levels of GRP78, CHOP, and ATF4 in RSC96 cells (P < 0.05). In contrast, knockdown of HDAC1 inhibited high glucose-promoted mitochondrial pathway apoptosis and suppressed the endoplasmic reticulum response. Moreover, RNA sequencing revealed that U4 spliceosomal RNA was significantly reduced in HDAC1-overexpressing RSC96 cells. Silencing of U4 spliceosomal RNA led to an increase in Bax/Bcl-2 and cleaved caspase-9 and a decrease in CHOP and ATF4. Conversely, overexpression of U4 spliceosomal RNA blocked HDAC1-promoted mitochondrial pathway apoptosis and inhibited the endoplasmic reticulum response. In addition, alternative splicing analysis of HDAC1-overexpressing RSC96 cells showed that significantly differential intron retention (IR) of Rpl21, Cdc34, and Mtmr11 might be dominant downstream targets that mediate U4 deficiency-induced Schwann cell dysfunction. Taken together, these findings indicate that HDAC1 promotes mitochondrial pathway-mediated apoptosis and inhibits the endoplasmic reticulum stress response in high glucose-cultured Schwann cells by decreasing the U4 spliceosomal RNA/IR of Rpl21, Cdc34, and Mtmr11.

13.
J Clin Invest ; 134(13)2024 May 09.
Article in English | MEDLINE | ID: mdl-38722683

ABSTRACT

This study reports that targeting intrinsically disordered regions of the voltage-gated sodium channel 1.7 (NaV1.7) protein facilitates discovery of sodium channel inhibitory peptide aptamers (NaViPA) for adeno-associated virus-mediated (AAV-mediated), sensory neuron-specific analgesia. A multipronged inhibition of INa1.7, INa1.6, INa1.3, and INa1.1 - but not INa1.5 and INa1.8 - was found for a prototype and named NaViPA1, which was derived from the NaV1.7 intracellular loop 1, and is conserved among the TTXs NaV subtypes. NaViPA1 expression in primary sensory neurons (PSNs) of dorsal root ganglia (DRG) produced significant inhibition of TTXs INa but not TTXr INa. DRG injection of AAV6-encoded NaViPA1 significantly attenuated evoked and spontaneous pain behaviors in both male and female rats with neuropathic pain induced by tibial nerve injury (TNI). Whole-cell current clamp of the PSNs showed that NaViPA1 expression normalized PSN excitability in TNI rats, suggesting that NaViPA1 attenuated pain by reversal of injury-induced neuronal hypersensitivity. IHC revealed efficient NaViPA1 expression restricted in PSNs and their central and peripheral terminals, indicating PSN-restricted AAV biodistribution. Inhibition of sodium channels by NaViPA1 was replicated in the human iPSC-derived sensory neurons. These results summate that NaViPA1 is a promising analgesic lead that, combined with AAV-mediated PSN-specific block of multiple TTXs NaVs, has potential as a peripheral nerve-restricted analgesic therapeutic.


Subject(s)
Dependovirus , NAV1.7 Voltage-Gated Sodium Channel , Sensory Receptor Cells , Animals , Rats , Dependovirus/genetics , Sensory Receptor Cells/metabolism , Male , Humans , Female , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Ganglia, Spinal/metabolism , Rats, Sprague-Dawley , Neuralgia/metabolism , Neuralgia/genetics , Neuralgia/drug therapy , Analgesia
14.
JCI Insight ; 9(13)2024 May 28.
Article in English | MEDLINE | ID: mdl-38805402

ABSTRACT

BACKGROUNDIdentifying patients with acute kidney injury (AKI) at high risk of chronic kidney disease (CKD) progression remains a challenge.METHODSKidney transcriptome sequencing was applied to identify the top upregulated genes in mice with AKI. The product of the top-ranking gene was identified in tubular cells and urine in mouse and human AKI. Two cohorts of patients with prehospitalization estimated glomerular filtration rate (eGFR) ≥ 45 mL/min/1.73 m2 who survived over 90 days after AKI were used to derive and validate the predictive models. AKI-CKD progression was defined as eGFR < 60 mL/min/1.73 m2 and with minimum 25% reduction from baseline 90 days after AKI in patients with prehospitalization eGFR ≥ 60 mL/min/1.73 m2. AKI-advanced CKD was defined as eGFR < 30 mL/min/1.73 m2 90 days after AKI in those with prehospitalization eGFR 45-59 mL/min/1.73 m2.RESULTSKidney cytokeratin 20 (CK20) was upregulated in injured proximal tubular cells and detectable in urine within 7 days after AKI. High concentrations of urinary CK20 (uCK20) were independently associated with the severity of histological AKI and the risk of AKI-CKD progression. In the Test set, the AUC of uCK20 for predicting AKI-CKD was 0.80, outperforming reported biomarkers for predicting AKI. Adding uCK20 to clinical variables improved the ability to predict AKI-CKD progression, with an AUC of 0.90, and improved the risk reclassification.CONCLUSIONThese findings highlight uCK20 as a useful predictor for AKI-CKD progression and may provide a tool to identify patients at high risk of CKD following AKI.FUNDINGNational Natural Science Foundation of China, National Key R&D Program of China, 111 Plan, Guangdong Key R&D Program.


Subject(s)
Acute Kidney Injury , Glomerular Filtration Rate , Renal Insufficiency, Chronic , Acute Kidney Injury/urine , Acute Kidney Injury/diagnosis , Acute Kidney Injury/metabolism , Acute Kidney Injury/etiology , Humans , Animals , Renal Insufficiency, Chronic/urine , Renal Insufficiency, Chronic/metabolism , Mice , Male , Female , Middle Aged , Biomarkers/urine , Aged , Disease Progression , Disease Models, Animal
15.
Pediatr Infect Dis J ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717173

ABSTRACT

BACKGROUND: Early identification of high-risk groups of children with sepsis is beneficial to reduce sepsis mortality. This article used artificial intelligence (AI) technology to predict the risk of death effectively and quickly in children with sepsis in the pediatric intensive care unit (PICU). STUDY DESIGN: This retrospective observational study was conducted in the PICUs of the First Affiliated Hospital of Sun Yat-sen University from December 2016 to June 2019 and Shenzhen Children's Hospital from January 2019 to July 2020. The children were divided into a death group and a survival group. Different machine language (ML) models were used to predict the risk of death in children with sepsis. RESULTS: A total of 671 children with sepsis were enrolled. The accuracy (ACC) of the artificial neural network model was better than that of support vector machine, logical regression analysis, Bayesian, K nearest neighbor method and decision tree models, with a training set ACC of 0.99 and a test set ACC of 0.96. CONCLUSIONS: The AI model can be used to predict the risk of death due to sepsis in children in the PICU, and the artificial neural network model is better than other AI models in predicting mortality risk.

16.
World J Gastrointest Oncol ; 16(5): 2225-2232, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764847

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC), a major contributor to cancer-related deaths, is particularly prevalent in Asia, largely due to hepatitis B virus infection. Its prognosis is generally poor. This case report contributes to the medical literature by detailing a unique approach in treating a large HCC through multidisciplinary collaboration, particularly in patients with massive HCC complicated by ruptured bleeding, a scenario not extensively documented previously. CASE SUMMARY: The patient presented with large HCC complicated by intratumoral bleeding. Treatment involved a multidisciplinary approach, providing individualized care. The strategy included drug-eluting bead transarterial chemoembolization, sorafenib-targeted therapy, laparoscopic partial hepatectomy, and standardized sintilimab monoclonal antibody therapy. Six months after treatment, the patient achieved complete radiological remission, with significant symptom relief. Imaging studies showed no lesions or recurrence, and clinical assessments confirmed complete remission. This report is notable as possibly the first documented case of successfully treating such complex HCC conditions through integrated multidisciplinary efforts, offering new insights and a reference for future similar cases. CONCLUSION: This study demonstrated effective multidisciplinary treatment for massive HCC with intratumoral bleeding, providing insights for future similar cases.

18.
Transpl Immunol ; 85: 102052, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38750973

ABSTRACT

BACKGROUND: The aqueous humor, a transparent fluid secreted by the ciliary body, supports the lens of the eyeball. In this study, we analyzed the cytokine and chemokine profiles within the aqueous humor of the contralateral eye post-implantation of an implantable collamer lens (ICL) to evaluate potential subclinical inflammation in the second eye subsequent to ICL implantation in the first eye. METHODS: Aqueous humor samples were procured from both eyes of 40 patients (totaling 80 eyes) prior to bilateral ICL insertion. Subsequently, a comprehensive statistical analysis was conducted using the Luminex assay to quantify 30 different cytokines in these samples. RESULTS: Compared to the first eye, the aqueous humor of the second eye demonstrated decreased concentrations of IFN-γ (P = 0.038), IL-13 (P = 0.027), IL-17/IL-17 A (P = 0.012), and IL-4 (P = 0.025). No significant differences were observed in other cytokine levels between the two groups. Patients were then categorized based on the postoperative rise in intraocular pressure (IOP) in the first eye. The group with elevated IOP displayed elevated levels of EGF in the aqueous humor of the first eye (P = 0.013) and higher levels of PDGF-AB/BB in the aqueous humor of the second eye (P = 0.032) compared to the group with normal IOP. Within the elevated IOP group, the levels of EGF (P = 0.013) and IL-17/IL-17 A (P = 0.016) in the aqueous humor were lower in the second eye than in the first eye. In the normal IOP group, cytokine levels did not differ notably between eyes. CONCLUSION: Following sequential ICL implantation, it appears that a protective response may be activated to mitigate subclinical inflammation in the second eye induced by the initial implantation in the first eye. Additionally, the increase in IOP subsequent to surgery in the first eye may correlate with the presence of inflammatory mediators in the aqueous humor.

19.
Opt Lett ; 49(10): 2817-2820, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748169

ABSTRACT

Alteration in the elastic properties of biological tissues may indicate changes in the structure and components. Acoustic radiation force optical coherence elastography (ARF-OCE) can assess the elastic properties of the ocular tissues non-invasively. However, coupling the ultrasound beam and the optical beam remains challenging. In this Letter, we proposed an OCE method incorporating homolateral parallel ARF excitation for measuring the elasticity of the ocular tissues. An acoustic-optic coupling unit was established to reflect the ultrasound beam while transmitting the light beam. The ARF excited the ocular tissue in the direction parallel to the light beam from the same side of the light beam. We demonstrated the method on the agar phantoms, the porcine cornea, and the porcine retina. The results show that the ARF-OCE method can measure the elasticity of the cornea and the retina, resulting in higher detection sensitivity and a more extensive scanning range.


Subject(s)
Cornea , Elasticity Imaging Techniques , Phantoms, Imaging , Tomography, Optical Coherence , Elasticity Imaging Techniques/methods , Animals , Swine , Cornea/diagnostic imaging , Cornea/physiology , Tomography, Optical Coherence/methods , Elasticity , Retina/diagnostic imaging , Retina/physiology
20.
J Phys Condens Matter ; 36(32)2024 May 10.
Article in English | MEDLINE | ID: mdl-38670080

ABSTRACT

Topological phases in kagome systems have garnered considerable interest since the introduction of the colloidal kagome lattice. Our study employs first-principle calculations and symmetry analysis to predict the existence of ideal type-I, III nodal rings (NRs), type-I, III quadratic nodal points (QNPs), and Dirac valley phonons (DVPs) in a collection of two-dimensional (2D) kagome lattices M2C3(M = As, Bi, Cd, Hg, P, Sb, Zn). Specifically, the Dirac valley points (DVPs) can be observed at two inequivalent valleys with Berry phases of +πand-π, connected by edge arcs along the zigzag and armchair directions. Additionally, the QNP is pinned at the Γ point, and two edge states emerge from its projections. Notably, these kagome lattices also exhibit ideal type-I and III nodal rings protected by time inversion and spatial inversion symmetries. Our work examines the various categories of nodal points and nodal ring phonons within the 2D kagome systems and presents a selection of ideal candidates for investigating topological phonons in bosonic systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...