Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Foods ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38890850

ABSTRACT

Bixin is the main carotenoid found in the outer portion of the seeds of Bixa orellana L., commercially known as annatto. This compound is industrially employed in pharmaceutical, cosmetic, and food formulations as a natural dye to replace chemical additives. This study aimed to extract bixin from annatto seeds and obtain encapsulated bixin in a powder form, using freeze-drying encapsulation and maltodextrin as encapsulating agent. Bixin was extracted from annatto seeds employing successive washing with organic solvents, specifically hexane and methanol (1:1 v/v), followed by ethyl acetate and dichloromethane for subsequent washes, to effectively remove impurities and enhance bixin purity, and subsequent purification by crystallization, reaching 1.5 ± 0.2% yield (or approximately 15 mg of bixin per gram of seeds). Bixin was analyzed spectrophotometrically in different organic solvents (ethanol, isopropyl alcohol, dimethylsulfoxide, chloroform, hexane), and the solvents chosen were chloroform (used to solubilize bixin during microencapsulation) and hexane (used for spectrophotometric determination of bixin). Bixin was encapsulated according to a 22 experimental design to investigate the influence of the concentration of maltodextrin (20 to 40%) and bixin-to-matrix ratio (1:20 to 1:40) on the encapsulation efficiency (EE%) and solubility of the encapsulated powder. Higher encapsulation efficiency was obtained at a maltodextrin concentration of 40% w/v and a bixin/maltodextrin ratio of 1:20, while higher solubility was observed at a maltodextrin concentration of 20% w/v for the same bixin/maltodextrin ratio. The encapsulation of this carotenoid by means of freeze-drying is thus recognized as an innovative and promising approach to improve its stability for further processing in pharmaceutical and food applications.

2.
Biotechnol Rep (Amst) ; 29: e00599, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33728263

ABSTRACT

The objective of this study was to optimize the production of CMCase by Bacillus licheniformis BCLLNF-01, a strain associated with the mucus of the zoanthid Palythoa caribaeorum (Cnidaria, Anthozoa). Production of total cellulase and CMCase was investigated in the supernatant, intracellular content and wall content. Cultivation was carried out in BLM medium supplemented with 1.5 % (w/v) CMC, 5.5 % (v/v) inoculum, 40 °C, pH 6.5, 500 rpm for 72 h, and the highest activity was recorded in the supernatant. A Rotational Central Composite Design (RCCD) 2³ was used to investigate the influence of the carbon source concentration (CMC-0.5 to 1.5 % w/v), inoculum concentration (1-10 % v/v) and temperature (35-45 °C) on CMCase production. The maximum enzyme activity was achieved for a CMC concentration of 1.5 % w/v at 40 °C, attaining 0.493 IU/mL after 96 h of cultivation.

3.
J Microencapsul ; 37(3): 270-282, 2020 May.
Article in English | MEDLINE | ID: mdl-32067529

ABSTRACT

Aim: The encapsulation of Trichoderma asperellum BRM-29104 using Ca-alginate matrix was evaluated.Methods: Intact and freeze-dried beads containing submerged conidia and microsclerotia (MS) of T. asperellum grown in liquid culture were prepared and characterised. Beads were stored at 8, 25, and 35 °C over 120 days.Results: The mean sizes of beads before and after freeze-drying were 2.5 ± 0.2 mm and 1.5 × 1.1 mm (± 0.1 mm), respectively. Freeze-dried beads stored at 8 °C were more effective in maintaining conidia concentration, while MS concentrations yielded 102 MS/g for both beads at 8 and 25 °C. The concentration of viable cells in freeze-dried beads stored at 8 °C attained 3.0 × 108 CFU/g after 120 days. FIRT analysis showed an interaction between the alginate and the cell wall of the fungus.Conclusion: These findings support the use of alginate beads followed by freeze drying and cold storage for maintenance of viability of T. asperellum.


Subject(s)
Alginates/chemistry , Hypocreales , Microbial Viability , Spores, Fungal , Freeze Drying , Hypocreales/chemistry , Hypocreales/metabolism , Spores, Fungal/chemistry , Spores, Fungal/metabolism
4.
Braz. J. Pharm. Sci. (Online) ; 56: e17808, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089231

ABSTRACT

This study evaluated the incorporation of tetracaine into liposomes by RSM (Response Surface Methodology) and ANN (Artificial Neural Networks) based models. RCCD (rotational central composite design) and ANN were performed to optimize the sonication conditions of particles containing 100 % lipid. Laser light scattering was used to perform measure hydrodynamic radius and size distribution of vesicles. The liposomal formulations were analyzed by incorporating the drug into the hydrophilic phase or the lipophilic phase. RCCD and ANN were conducted, having the lipid/cholesterol ratio and concentration of tetracaine as variables investigated and, the encapsulation efficiency and mean diameter of the vesicles as response variables. The optimum sonication condition set at a power of 16 kHz and 3 minutes, resulting in sizes smaller than 800 nm. Maximum encapsulation efficiency (39.7 %) was obtained in the hydrophilic phase to a tetracaine concentration of 8.37 mg/mL and 79.5:20.5% lipid/cholesterol ratio. Liposomes were stable for about 30 days (at 4 ºC), and the drug encapsulation efficiency was higher in the hydrophilic phase. The experimental results of RCCD-RSM and ANN techniques show ANN obtained more refined prediction errors that RCCD-RSM technique, therefore, ANN can be considered as an efficient mathematical method to characterize the incorporation of tetracaine into liposomes.


Subject(s)
Tetracaine/analysis , Liposomes/metabolism , Pharmaceutical Preparations/analysis , Efficiency/classification , Methodology as a Subject
5.
An Acad Bras Cienc ; 91(2): e20180333, 2019.
Article in English | MEDLINE | ID: mdl-31038537

ABSTRACT

Abstract: The present work investigated what the appropriate methods of hydrolysis of pectin for reducing compounds (RCs) production, employed as a substrate for cell growth of Cupriavidus necator. This microorganism has great importance industrial, because besides potential single cell protein (SCP), is the most studied microorganism for production of polyhydroxybutyrate (PHB), and both processes require high cell concentration with inexpensive substrates For this, it was compared to acid and enzymatic hydrolysis procedures, through rotational central composite experimental design, using pectin concentration (1.0%). It was analyzed as a variable response for both experimental design, the RCs' production. The best conditions of each procedure were used in study kinetics of RCs' production and as a substrate for cell growth of C. necator. The results indicated that the enzymatic hydrolysis method was the most efficient, with a 93.0% yield of RCs, while the yield for acid hydrolysis was 60.0%. The optimum conditions for enzymatic hydrolysis were an enzyme concentration of 10.01 UI/g (International Unit of enzyme per gram of pectin) and an agitation speed of 230.3 rpm. C. necator showed satisfactory growth in the media containing pectin hydrolysates, with specific growth rates (µMax) similar to those reported for other substrates.


Subject(s)
Culture Media/chemistry , Cupriavidus necator/growth & development , Pectins/chemistry , Analysis of Variance , Cell Culture Techniques/methods , Cell Proliferation/physiology , Hexuronic Acids/chemistry , Hydrolysis , Kinetics , Reference Values , Reproducibility of Results , Spectrophotometry/methods , Temperature , Time Factors
6.
An Acad Bras Cienc ; 91(1): e20180058, 2019.
Article in English | MEDLINE | ID: mdl-30994757

ABSTRACT

Brazil is the world's largest producer of orange and passion fruit, which are destined mainly for industrialization, generating grand volumes of wastes. The solid portion of these residues is a rich source of pectin - composed mainly of galacturonic acid and neutral sugars, which through the hydrolysis process can be used in biological conversion processes, as the production of polyhydroxyalkanoates (PHAs). This way, we characterized these wastes, followed by the extraction and hydrolysis of pectin for employ as a substrate for the cell growth of Cupriavidus necator. The results confirmed the large portion of pectin (almost 40 g.100g-1) and soluble sugars, present in these wastes. The hydrolyzed extract showed as a good source of carbon for the cell growth of C. necator with YX/S 0.56 and 0.44, µMax 0.27 and 0.21 for orange and passion fruit wastes respectively, similar to other carbon sources. This way, the extraction and hydrolysis of orange and passion fruit wastes for the cellular growth of C. necator, can be a good alternative to converting of residues in high value added product.


Subject(s)
Citrus sinensis/chemistry , Citrus sinensis/microbiology , Cupriavidus necator/physiology , Passiflora/chemistry , Passiflora/microbiology , Plant Extracts/chemistry , Solid Waste , Carbohydrate Metabolism , Carbohydrates/chemistry , Citrus sinensis/metabolism , Hydrolysis , Passiflora/metabolism , Pectins/chemistry , Pectins/metabolism , Plant Extracts/metabolism , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/metabolism , Reference Values , Substrate Cycling
7.
J Food Sci Technol ; 55(12): 5055-5063, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30483001

ABSTRACT

The aims of the study were to develop and apply alginate and pectin-based edible coatings on minimally processed mango (Mangifera indica L.) variety 'Espada'. A full experimental design was performed using alginate, pectin and glycerol concentrations as independent variables and total soluble solids as response variable. Minimally processed mango was immersed in each film forming solution, calcium chloride and glycerol solutions pretreated with 1% (w/v) solution of ascorbic acid, dried at 25 ± 2 °C for 24 h and then refrigerated at 8 ± 1 °C for 14 d. Based on the results of the experimental design, the following formulations were evaluated: 2% (w/v) alginate/3% (w/v) pectin (with and without glycerol) and 3% (w/v) alginate/0.5% (w/v) pectin (with and without glycerol). Fruits coated with biopolymers had lower total soluble solids content and titratable acidity compared to the control group. The formulation containing 2% (w/v) alginate, 3% (w/v) pectin and 5.5% (w/v) glycerol showed the best performance for long-term refrigerated storage of minimally processed mango for a period of 16 d.

8.
An Acad Bras Cienc ; 89(3): 1601-1613, 2017.
Article in English | MEDLINE | ID: mdl-28876396

ABSTRACT

This paper describes the preparation and characterization of alginate beads coated with gelatin and containing Lactobacillus rhamnosus. Capsules were obtained by extrusion method using CaCl2 as cross linker. An experimental design was performed using alginate and gelatin concentrations as the variables investigated, while the response variable was the concentration of viable cells. Beads were characterized in terms of size, morphology, scanning electron microscopy (SEM), moisture content, Fourier Transform Infrared Spectrometry (FTIR), thermal behavior and cell viability during storage. The results showed that the highest concentration of viable cells (4.2 x 109 CFU/g) was obtained for 1 % w/v of alginate and 0.1 % w/v of gelatin. Capsules were predominantly spherical with a rough surface, a narrow size distribution ranging from 1.53 to 1.90 mm and a moisture content of 97.70 ± 0.03 %. Furthermore, FTIR and thermogravimetric analysis indicated an interaction between alginate-gelatin. Cell concentration of alginate/gelatin microcapsules was 105 CFU/g after 4 months of storage at 8 oC.


Subject(s)
Alginates , Capsules/standards , Drug Stability , Gelatin , Lacticaseibacillus rhamnosus/ultrastructure , Probiotics , Alginates/ultrastructure , Cell Survival , Drug Storage , Gelatin/ultrastructure , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
9.
An. acad. bras. ciênc ; 89(3): 1601-1613, July-Sept. 2017. tab, graf
Article in English | LILACS | ID: biblio-886732

ABSTRACT

ABSTRACT This paper describes the preparation and characterization of alginate beads coated with gelatin and containing Lactobacillus rhamnosus. Capsules were obtained by extrusion method using CaCl2 as cross linker. An experimental design was performed using alginate and gelatin concentrations as the variables investigated, while the response variable was the concentration of viable cells. Beads were characterized in terms of size, morphology, scanning electron microscopy (SEM), moisture content, Fourier Transform Infrared Spectrometry (FTIR), thermal behavior and cell viability during storage. The results showed that the highest concentration of viable cells (4.2 x 109 CFU/g) was obtained for 1 % w/v of alginate and 0.1 % w/v of gelatin. Capsules were predominantly spherical with a rough surface, a narrow size distribution ranging from 1.53 to 1.90 mm and a moisture content of 97.70 ± 0.03 %. Furthermore, FTIR and thermogravimetric analysis indicated an interaction between alginate-gelatin. Cell concentration of alginate/gelatin microcapsules was 105 CFU/g after 4 months of storage at 8 oC.


Subject(s)
Capsules/standards , Probiotics , Drug Stability , Alginates/ultrastructure , Lacticaseibacillus rhamnosus/ultrastructure , Gelatin/ultrastructure , Microscopy, Electron, Scanning , Cell Survival , Spectroscopy, Fourier Transform Infrared , Drug Storage
10.
J Microencapsul ; 31(8): 759-67, 2014.
Article in English | MEDLINE | ID: mdl-25090592

ABSTRACT

This study evaluates the use of spray drying to produce microparticles of Lactobacillus casei. Microorganism was cultivated in shaken flasks and the microencapsulation process was performed using a laboratory-scale spray dryer. A rotational central composite design was employed to optimise the drying conditions. High cell viability (1.1 × 10(10) CFU/g) was achieved using an inlet air temperature of 70 °C and 25% (w/v) of maltodextrin. Microparticles presented values of solubility, wettability, water activity, hygroscopicity and humidity corresponding to 97.03 ± 0.04%, 100% (in 1.16 min), 0.14 ± 0.0, 35.20 g H2O/100 g and 4.80 ± 0.43%, respectively. The microparticles were spherical with a smooth surface and thermally stable. Encapsulation improved the survival of L. casei during storage. After 60 days, the samples stored at -8 °C showed viable cell concentrations of 1.0 × 10(9) CFU/g.


Subject(s)
Lacticaseibacillus casei/chemistry , Lacticaseibacillus casei/cytology , Capsules , Cells, Immobilized/chemistry , Cells, Immobilized/cytology
11.
J Liposome Res ; 23(1): 47-53, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23363304

ABSTRACT

Drug administration through the transdermal route has optimized for the comfort of patients and easy application. However, the main limitation of transdermal drug delivery is the impermeability of the human skin. Recent advances on improvement of drug transport through the skin include elastic liposomes as a penetration enhancer. Entrapment of ferrofluids in the core of liposomes produces magnetoliposomes, which can be driven by a high-gradient magnetic field. The association of both strategies could enhance the penetration of elastic liposomes. This work relies on the preparation and characterization of elastic-magnetic liposomes designed to permeate through the skin. The incorporation of colloidal magnetite and the elastic component, octaethylene glycol laurate (PEG-8-L), in the structure of liposomes were evaluated. The capability of the elastic magnetoliposomes for permeation through nanopores of two stacked polycarbonate membranes was compared to conventional and elastic liposomes. Magnetite incorporation was dependent on vesicle diameter and size distribution as well as PEG-8-L incorporation into liposomes, demonstrating the capability of the fluid bilayer to accommodate the surfactant without disruption. On the contrary, PEG-8-L incorporation into magnetoliposomes promoted a decrease of average diameter and a lower PEG-8-L incorporation percentage as a result of reduction on the fluidity of the bilayer imparted by iron incorporation into the lipid structure. Elastic liposomes demonstrated an enhancement of the deformation capability, as compared with conventional liposomes. Conventional and elastic magnetoliposomes presented a reduced capability for deformation and permeation.


Subject(s)
Colloids/chemistry , Liposomes/administration & dosage , Pulmonary Surfactants/administration & dosage , Administration, Cutaneous , Colloids/administration & dosage , Ferrosoferric Oxide/administration & dosage , Ferrosoferric Oxide/chemistry , Humans , Laurates/administration & dosage , Laurates/chemistry , Liposomes/chemistry , Magnetic Fields , Pharmacokinetics , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/chemistry , Pulmonary Surfactants/chemistry
12.
Acta Trop ; 107(2): 134-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18582843

ABSTRACT

Flocculation/sedimentation of Bacillus thuringiensis var. israelensis (Bti) using flocculating agents has been studied. Batch cell production was performed in an agitated tank, and the flocculation assays were carried out in jar tests. Flocculent suspensions were characterized based on diameter of flocs and density. The best results were obtained with CaCl(2).2H(2)O, FeCl(3).6H(2)O, Al(2)(SO(4))(3) and tannin, with optimal flocculation concentrations of 2500, 2500, 3500 and 1000 mg l(-1), respectively. Thickening of the flocculent suspensions was investigated, leading to determination of the capacity curves of the settler. Bioassays against Aedes aegypti larvae demonstrated excellent results in insect control.


Subject(s)
Aedes/microbiology , Bacillus thuringiensis/growth & development , Biotechnology/methods , Centrifugation/methods , Flocculation , Pest Control, Biological , Aedes/growth & development , Animals , Culture Media , Insecticides , Larva/microbiology
13.
World J Microbiol Biotechnol ; 23(12): 1789-95, 2007 Dec.
Article in English | MEDLINE | ID: mdl-27517835

ABSTRACT

Separation and cells concentration constitute important stages in most biotechnological processes. Particularly, use of flocculation/sedimentation can improve significantly the extraction of biopolymers accumulated by microorganisms and the biodegradation of xenobiotic compounds by cell sludge. In this work the use of tannin and aluminum sulphate (Al2(SO4)3) as flocculating agents for concentration of cells of Cupriavidus necator DSM 545 is evaluated. Cells were grown in broth nutrient medium in Erlenmeyer flasks, submitted to orbital agitation of 160 rpm at 30 °C for 21 h. The optimal concentrations of flocculating agents, as determined with a standard jar test method, were equal to 2,800 mg/L for tannin and 800 mg/L for Al2(SO4)3, allowing for recovery of 95% of the cells in both cases. Obtained flocs presented density and average diameter of 1.03 g/mL ± 0.01 g/mL and 158 µm ± 19 µm for tannin and of 1.05 g/mL ± 0.01 g/mL and 146 µm ± 14 µm for Al2(SO4)3, respectively. Batch settling tests were performed in order to determine the operational capacity of continuous settlers to be used for separation of the investigated flocculent suspensions. Finally, cultivation of cells using flocs as inoculum indicated that the cells remained viable after flocculation with usage of the optimum flocculating agent concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...