Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 41(7): 1187-1208, 2020 07.
Article in English | MEDLINE | ID: mdl-32369864

ABSTRACT

NKX2-5 is a homeodomain transcription factor that plays a crucial role in heart development. It is the first gene where a single genetic variant (GV) was found to be associated with congenital heart diseases in humans. In this study, we carried out a comprehensive survey of NKX2-5 GVs to build a unified, curated, and updated compilation of all available GVs. We retrieved a total of 1,380 unique GVs. From these, 970 had information on their frequency in the general population and 143 have been linked to pathogenic phenotypes in humans. In vitro effect was ascertained for 38 GVs. The homeodomain had the biggest cluster of pathogenic variants in the protein: 49 GVs in 60 residues, 23 in its third α-helix, where 11 missense variants may affect protein-DNA interaction or the hydrophobic core. We also pinpointed the likely location of pathogenic GVs in four linear motifs. These analyses allowed us to assign a putative explanation for the effect of 90 GVs. This study pointed to reliable pathogenicity for GVs in helix 3 of the homeodomain and may broaden the scope of functional and structural studies that can be done to better understand the effect of GVs in NKX2-5 function.


Subject(s)
Homeobox Protein Nkx-2.5/genetics , Amino Acid Motifs , Databases, Genetic , Humans , Mutation , Protein Structure, Secondary
2.
JBRA Assist Reprod ; 24(2): 104-114, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32155011

ABSTRACT

OBJECTIVE: To present the development of the first custom gene panel for the diagnosis of male and female infertility in Latin America. METHODS: We developed a next-generation sequencing (NGS) panel that assesses genes associated with infertility. The panel targeted exons and their flanking regions. Selected introns in the CFTR gene were also included. The FMR1 gene and Y chromosome microdeletions were analyzed with other recommended methodologies. An in-house developed bioinformatic pipeline was applied for the interpretation of the results. Clear infertility phenotypes, idiopathic infertility, and samples with known pathogenic variants were evaluated. RESULTS: A total of 75 genes were selected based on female (primary ovarian insufficiency, risk of ovarian hyperstimulation syndrome, recurrent pregnancy loss, oocyte maturation defects, and embryo development arrest) and male conditions (azoospermia, severe oligospermia, asthenozoospermia, and teratozoospermia). The panel designed was used to assess 25 DNA samples. Two of the variants found were classified as pathogenic and enable the diagnosis of a woman with secondary amenorrhea and a man with oligoasthenoteratozoospermia. Targeted NGS assay metrics resulted in a mean of 180X coverage, with more than 98% of the bases covered ≥20X. CONCLUSION: Our custom gene sequencing panel designed for the diagnosis of male and female infertility caused by genetic defects revealed the underlying genetic cause of some cases of infertility. The panel will allow us to develop more precise approaches in assisted reproduction.


Subject(s)
Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Infertility , Female , Humans , Infertility/diagnosis , Infertility/genetics , Latin America , Male , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
3.
Front Microbiol ; 7: 51, 2016.
Article in English | MEDLINE | ID: mdl-26870014

ABSTRACT

The human microbiota is the collection of microorganisms living in or on the human body. An imbalance or dysbiosis in these microbial communities can be associated with a wide variety of human diseases (Petersen and Round, 2014; Pham and Lawley, 2014; Zaura et al., 2014). Moreover, when the microbiota of the same body sites is compared between different healthy individuals, specific microbial community features are apparent (Li et al., 2012; Yatsunenko et al., 2012; Oh et al., 2014; Relman, 2015). In addition, specific selective pressures are found at distinct body sites leading to different patterns in microbial community structure and composition (Costello et al., 2009; Consortium, 2012b; Zhou et al., 2013). Because of these natural variations, a comprehensive characterization of the healthy microbiota is critical for predicting alterations related to diseases. This characterization should be based on a broad healthy population over time, geography, and culture (Yatsunenko et al., 2012; Shetty et al., 2013; Leung et al., 2015; Ross et al., 2015). The study of healthy individuals representing different ages, cultural traditions, and ethnic origins will enable to understand how the associated microbiota varies between populations and respond to different lifestyles. It is important to address these natural variations in order to later detect variations related to disease.

4.
PLoS One ; 10(2): e0116358, 2015.
Article in English | MEDLINE | ID: mdl-25646853

ABSTRACT

INTRODUCTION: Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD. METHODS: We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents. RESULTS: Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6). CONCLUSIONS: We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.


Subject(s)
Autism Spectrum Disorder/genetics , DNA Mutational Analysis , Genomics , Mutation , Nerve Tissue Proteins/genetics , Pedigree , Base Sequence , Child , Child, Preschool , Female , Humans , Male , Mosaicism , Siblings
SELECTION OF CITATIONS
SEARCH DETAIL
...