Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Diabetes Care ; 46(2): 237-244, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36701597

ABSTRACT

"Relative hypoglycemia" is an often-overlooked complication of diabetes characterized by an increase in the glycemic threshold for detecting and responding to hypoglycemia. The clinical relevance of this problem is linked to growing evidence that among patients with critical illness, higher blood glucose in the intensive care unit is associated with higher mortality among patients without diabetes but lower mortality in patients with preexisting diabetes and an elevated prehospitalization HbA1c. Although additional studies are needed, the cardiovascular stress associated with hypoglycemia perception, which can occur at normal or even elevated glucose levels in patients with diabetes, offers a plausible explanation for this difference in outcomes. Little is known, however, regarding how hypoglycemia is normally detected by the brain, much less how relative hypoglycemia develops in patients with diabetes. In this article, we explore the role in hypoglycemia detection played by glucose-responsive sensory neurons supplying peripheral vascular beds and/or circumventricular organs. These observations support a model wherein relative hypoglycemia results from diabetes-associated impairment of this neuronal glucose-sensing process. By raising the glycemic threshold for hypoglycemia perception, this impairment may contribute to the increased mortality risk associated with standard glycemic management of critically ill patients with diabetes.


Subject(s)
Diabetes Mellitus , Hyperglycemia , Hypoglycemia , Humans , Blood Glucose , Brain , Critical Illness
2.
Annu Rev Pharmacol Toxicol ; 62: 55-84, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34990204

ABSTRACT

Historically, pancreatic islet beta cells have been viewed as principal regulators of glycemia, with type 2 diabetes (T2D) resulting when insulin secretion fails to compensate for peripheral tissue insulin resistance. However, glycemia is also regulated by insulin-independent mechanisms that are dysregulated in T2D. Based on evidence supporting its role both in adaptive coupling of insulin secretion to changes in insulin sensitivity and in the regulation of insulin-independent glucose disposal, the central nervous system (CNS) has emerged as a fundamental player in glucose homeostasis. Here, we review and expand upon an integrative model wherein the CNS, together with the islet, establishes and maintains the defended level of glycemia. We discuss the implications of this model for understanding both normal glucose homeostasis and T2D pathogenesis and highlight centrally targeted therapeutic approaches with the potential to restore normoglycemia to patients with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Central Nervous System , Diabetes Mellitus, Type 2/drug therapy , Glucose , Homeostasis , Humans , Insulin
3.
FEBS J ; 289(8): 2362-2381, 2022 04.
Article in English | MEDLINE | ID: mdl-34469623

ABSTRACT

Neurons in the hypothalamic arcuate nucleus (ARC) that express agouti-related peptide (AgRP) govern a critical aspect of survival: the drive to eat. Equally important to survival is the timing at which food is consumed-seeking or eating food to alleviate hunger in the face of a more pressing threat, like the risk of predation, is clearly maladaptive. To ensure optimal prioritization of behaviors within a given environment, therefore, AgRP neurons must integrate signals of internal need states with contextual environmental cues. In this state-of-the-art review, we highlight recent advances that extend our understanding of AgRP neurons, including the neural circuits they engage to regulate feeding, energy expenditure, and behavior. We also discuss key findings that illustrate how both classical feedback and anticipatory feedforward signals regulate this neuronal population and how the integration of these signals may be disrupted in states of energy excess. Finally, we examine both technical and conceptual challenges facing the field moving forward.


Subject(s)
Arcuate Nucleus of Hypothalamus , Neurons , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Energy Metabolism , Neurons/metabolism
4.
Alzheimers Dement ; 18(5): 942-954, 2022 05.
Article in English | MEDLINE | ID: mdl-34482642

ABSTRACT

The extracellular matrix (ECM) of the brain comprises unique glycan "sulfation codes" that influence neurological function. Perineuronal nets (PNNs) are chondroitin sulfate-glycosaminoglycan (CS-GAG) containing matrices that enmesh neural networks involved in memory and cognition, and loss of PNN matrices is reported in patients with neurocognitive and neuropsychiatric disorders including Alzheimer's disease (AD). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we show that patients with a clinical diagnosis of AD-related dementia undergo a re-coding of their PNN-associated CS-GAGs that correlates to Braak stage progression, hyperphosphorylated tau (p-tau) accumulation, and cognitive impairment. As these CS-GAG sulfation changes are detectable prior to the regional onset of classical AD pathology, they may contribute to the initiation and/or progression of the underlying degenerative processes and implicate the brain matrix sulfation code as a key player in the development of AD clinicopathology.


Subject(s)
Alzheimer Disease , Brain/physiology , Chromatography, Liquid , Extracellular Matrix/chemistry , Humans , Tandem Mass Spectrometry
5.
Elife ; 102021 02 02.
Article in English | MEDLINE | ID: mdl-33527893

ABSTRACT

The brain plays an essential role in driving daily rhythms of behavior and metabolism in harmony with environmental light-dark cycles. Within the brain, the dorsomedial hypothalamic nucleus (DMH) has been implicated in the integrative circadian control of feeding and energy homeostasis, but the underlying cell types are unknown. Here, we identify a role for DMH leptin receptor-expressing (DMHLepR) neurons in this integrative control. Using a viral approach, we show that silencing neurotransmission in DMHLepR neurons in adult mice not only increases body weight and adiposity but also phase-advances diurnal rhythms of feeding and metabolism into the light cycle and abolishes the normal increase in dark-cycle locomotor activity characteristic of nocturnal rodents. Finally, DMHLepR-silenced mice fail to entrain to a restrictive change in food availability. Together, these findings identify DMHLepR neurons as critical determinants of the daily time of feeding and associated metabolic rhythms.


Subject(s)
Circadian Rhythm , Energy Metabolism/physiology , Feeding Behavior/physiology , Receptors, Leptin/genetics , Animals , Body Weight , Dorsomedial Hypothalamic Nucleus , Female , Locomotion/physiology , Male , Mice , Obesity/genetics , Obesity/metabolism , Photoperiod
6.
Elife ; 92020 12 15.
Article in English | MEDLINE | ID: mdl-33320088

ABSTRACT

To maintain energy homeostasis during cold exposure, the increased energy demands of thermogenesis must be counterbalanced by increased energy intake. To investigate the neurobiological mechanisms underlying this cold-induced hyperphagia, we asked whether agouti-related peptide (AgRP) neurons are activated when animals are placed in a cold environment and, if so, whether this response is required for the associated hyperphagia. We report that AgRP neuron activation occurs rapidly upon acute cold exposure, as do increases of both energy expenditure and energy intake, suggesting the mere perception of cold is sufficient to engage each of these responses. We further report that silencing of AgRP neurons selectively blocks the effect of cold exposure to increase food intake but has no effect on energy expenditure. Together, these findings establish a physiologically important role for AgRP neurons in the hyperphagic response to cold exposure.


Subject(s)
Agouti-Related Protein/metabolism , Cold Temperature , Feeding Behavior/physiology , Hyperphagia/physiopathology , Thermogenesis/physiology , Animals , Eating/physiology , Homeostasis/physiology , Male , Mice , Neurons/physiology
7.
Nat Commun ; 11(1): 4458, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32895383

ABSTRACT

In rodent models of type 2 diabetes (T2D), sustained remission of hyperglycemia can be induced by a single intracerebroventricular (icv) injection of fibroblast growth factor 1 (FGF1), and the mediobasal hypothalamus (MBH) was recently implicated as the brain area responsible for this effect. To better understand the cellular response to FGF1 in the MBH, we sequenced >79,000 single-cell transcriptomes from the hypothalamus of diabetic Lepob/ob mice obtained on Days 1 and 5 after icv injection of either FGF1 or vehicle. A wide range of transcriptional responses to FGF1 was observed across diverse hypothalamic cell types, with glial cell types responding much more robustly than neurons at both time points. Tanycytes and ependymal cells were the most FGF1-responsive cell type at Day 1, but astrocytes and oligodendrocyte lineage cells subsequently became more responsive. Based on histochemical and ultrastructural evidence of enhanced cell-cell interactions between astrocytes and Agrp neurons (key components of the melanocortin system), we performed a series of studies showing that intact melanocortin signaling is required for the sustained antidiabetic action of FGF1. These data collectively suggest that hypothalamic glial cells are leading targets for the effects of FGF1 and that sustained diabetes remission is dependent on intact melanocortin signaling.


Subject(s)
Diabetes Mellitus, Experimental/diet therapy , Diabetes Mellitus, Type 2/drug therapy , Fibroblast Growth Factor 1/administration & dosage , Hypoglycemic Agents/administration & dosage , Hypothalamus/drug effects , Recombinant Proteins/administration & dosage , Agouti-Related Protein/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Blood Glucose/analysis , Cell Communication , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Dietary Sucrose/administration & dosage , Dietary Sucrose/adverse effects , Humans , Hypothalamus/cytology , Hypothalamus/pathology , Injections, Intraventricular , Leptin/genetics , Male , Melanocortins/metabolism , Melanocyte-Stimulating Hormones/administration & dosage , Mice , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Oligodendroglia/drug effects , Oligodendroglia/metabolism , RNA-Seq , Receptor, Melanocortin, Type 4/genetics , Receptors, Melanocortin/antagonists & inhibitors , Receptors, Melanocortin/metabolism , Remission Induction/methods , Signal Transduction/drug effects , Single-Cell Analysis , Stereotaxic Techniques , Transcriptome/drug effects
8.
Diabetologia ; 63(10): 2086-2094, 2020 10.
Article in English | MEDLINE | ID: mdl-32894319

ABSTRACT

Increasing evidence suggests that, although pancreatic islets can function autonomously to detect and respond to changes in the circulating glucose level, the brain cooperates with the islet to maintain glycaemic control. Here, we review the role of the central and autonomic nervous systems in the control of the endocrine pancreas, including mechanisms whereby the brain senses circulating blood glucose levels. We also examine whether dysfunction in these systems might contribute to complications of type 1 diabetes and the pathogenesis of type 2 diabetes. Graphical abstract.


Subject(s)
Autonomic Nervous System/metabolism , Blood Glucose/metabolism , Central Nervous System/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucagon/metabolism , Insulin/metabolism , Islets of Langerhans/innervation , Animals , Autonomic Nervous System/physiopathology , Central Nervous System/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Humans , Insulin Secretion , Islets of Langerhans/metabolism , Sensory Receptor Cells
9.
J Vis Exp ; (159)2020 05 07.
Article in English | MEDLINE | ID: mdl-32449706

ABSTRACT

Stereotactic surgery is an essential tool in the modern neuroscience lab. However, the ability to precisely and accurately target difficult-to-reach brain regions still presents a challenge, particularly when targeting brain structures along the midline. These challenges include avoiding of the superior sagittal sinus and third ventricle and the ability to consistently target selective and discrete brain nuclei. In addition, more advanced neuroscience techniques (e.g., optogenetics, fiber photometry, and two-photon imaging) rely on targeted implantation of significant hardware to the brain, and spatial limitations are a common hindrance. Presented here is a modifiable protocol for stereotactic targeting of rodent brain structures using an angled coronal approach. It can be adapted to 1) mouse or rat models, 2) various neuroscience techniques, and 3) multiple brain regions. As a representative example, it includes the calculation of stereotactic coordinates for targeting of the mouse hypothalamic ventromedial nucleus (VMN) for an optogenetic inhibition experiment. This procedure begins with the bilateral microinjection of an adeno-associated virus (AAV) encoding a light-sensitive chloride channel (SwiChR++) to a Cre-dependent mouse model, followed by the angled bilateral implantation of fiberoptic cannulae. Using this approach, findings show that activation of a subset of VMN neurons is required for intact glucose counterregulatory responses to insulin-induced hypoglycemia.


Subject(s)
Neurosciences/instrumentation , Stereotaxic Techniques/instrumentation , Animals , Disease Models, Animal , Mice , Rats
10.
Mol Metab ; 32: 168-175, 2020 02.
Article in English | MEDLINE | ID: mdl-32029227

ABSTRACT

BACKGROUND: Leptin acts via its receptor, LepRb, on specialized neurons in the brain to modulate energy balance and glucose homeostasis. LepRb→STAT3 signaling plays a crucial role in leptin action, but LepRb also mediates an additional as-yet-unidentified signal (Signal 2) that is important for leptin action. Signal 2 requires LepRb regions in addition to those required for JAK2 activation but operates independently of STAT3 and LepRb phosphorylation sites. METHODS: To identify LepRb sequences that mediate Signal 2, we used CRISPR/Cas9 to generate five novel mouse lines containing COOH-terminal truncation mutants of LepRb. We analyzed the metabolic phenotype and measures of hypothalamic function for these mouse lines. RESULTS: We found that deletion of LepRb sequences between residues 921 and 960 dramatically worsens metabolic control and alters hypothalamic function relative to smaller truncations. We also found that deletion of the regions including residues 1013-1053 and 960-1013 each decreased obesity compared to deletions that included additional COOH-terminal residues. CONCLUSIONS: LepRb sequences between residues 921 and 960 mediate the STAT3 and LepRb phosphorylation-independent second signal that contributes to the control of energy balance and metabolism by leptin/LepRb. In addition to confirming the inhibitory role of the region (residues 961-1013) containing Tyr985, we also identified the region containing residues 1013-1053 (which contains no Tyr residues) as a second potential mediator of LepRb inhibition. Thus, the intracellular domain of LepRb mediates multiple Tyr-independent signals.


Subject(s)
Receptors, Leptin/genetics , STAT3 Transcription Factor/metabolism , Amino Acid Sequence , Animals , CRISPR-Cas Systems/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/metabolism , Receptors, Leptin/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction
11.
Diabetes ; 67(12): 2518-2529, 2018 12.
Article in English | MEDLINE | ID: mdl-30257978

ABSTRACT

The hypothalamic ventromedial nucleus (VMN) is implicated both in autonomic control of blood glucose and in behaviors including fear and aggression, but whether these divergent effects involve the same or distinct neuronal subsets and their projections is unknown. To address this question, we used an optogenetic approach to selectively activate the subset of VMN neurons that express neuronal nitric oxide synthase 1 (VMNNOS1 neurons) implicated in glucose counterregulation. We found that photoactivation of these neurons elicits 1) robust hyperglycemia achieved by activation of counterregulatory responses usually reserved for the physiological response to hypoglycemia and 2) defensive immobility behavior. Moreover, we show that the glucagon, but not corticosterone, response to insulin-induced hypoglycemia is blunted by photoinhibition of the same neurons. To investigate the neurocircuitry by which VMNNOS1 neurons mediate these effects, and to determine whether these diverse effects are dissociable from one another, we activated downstream VMNNOS1 projections in either the anterior bed nucleus of the stria terminalis (aBNST) or the periaqueductal gray (PAG). Whereas glycemic responses are fully recapitulated by activation of VMNNOS1 projections to the aBNST, freezing immobility occurred only upon activation of VMNNOS1 terminals in the PAG. These findings support previous evidence of a VMN→aBNST neurocircuit involved in glucose counterregulation and demonstrate that activation of VMNNOS1 neuronal projections supplying the PAG robustly elicits defensive behaviors.


Subject(s)
Behavior, Animal/physiology , Glucose/metabolism , Hypoglycemia/metabolism , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Periaqueductal Gray/metabolism , Septal Nuclei/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , Animals , Glucagon/metabolism , Hypoglycemia/chemically induced , Insulin , Mice , Neural Pathways/metabolism , Optogenetics
12.
Mol Metab ; 14: 130-138, 2018 08.
Article in English | MEDLINE | ID: mdl-29914853

ABSTRACT

OBJECTIVE: To date, early developmental ablation of leptin receptor (LepRb) expression from circumscribed populations of hypothalamic neurons (e.g., arcuate nucleus (ARC) Pomc- or Agrp-expressing cells) has only minimally affected energy balance. In contrast, removal of LepRb from at least two large populations (expressing vGat or Nos1) spanning multiple hypothalamic regions produced profound obesity and metabolic dysfunction. Thus, we tested the notion that the total number of leptin-responsive hypothalamic neurons (rather than specific subsets of cells with a particular molecular or anatomical signature) subjected to early LepRb deletion might determine energy balance. METHODS: We generated new mouse lines deleted for LepRb in ARC GhrhCre neurons or in Htr2cCre neurons (representing roughly half of all hypothalamic LepRb neurons, distributed across many nuclei). We compared the phenotypes of these mice to previously-reported models lacking LepRb in Pomc, Agrp, vGat or Nos1 cells. RESULTS: The early developmental deletion of LepRb from vGat or Nos1 neurons produced dramatic obesity, but deletion of LepRb from Pomc, Agrp, Ghrh, or Htr2c neurons minimally altered energy balance. CONCLUSIONS: Although early developmental deletion of LepRb from known populations of ARC neurons fails to substantially alter body weight, the minimal phenotype of mice lacking LepRb in Htr2c cells suggests that the phenotype that results from early developmental LepRb deficiency depends not simply upon the total number of leptin-responsive hypothalamic LepRb cells. Rather, specific populations of LepRb neurons must play particularly important roles in body energy homeostasis; these as yet unidentified LepRb cells likely reside in the DMH.


Subject(s)
Energy Metabolism , Hypothalamus/cytology , Neurons/metabolism , Obesity/metabolism , Receptors, Leptin/genetics , Animals , Female , Gene Deletion , Hypothalamus/embryology , Hypothalamus/metabolism , Male , Mice , Neurons/classification , Neurons/cytology , Receptor, Serotonin, 5-HT2C/genetics , Receptor, Serotonin, 5-HT2C/metabolism , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Receptors, Leptin/metabolism
13.
Endocrinology ; 159(4): 1585-1594, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29438473

ABSTRACT

Growing evidence implicates neurons that project from the lateral parabrachial nucleus (LPBN) to the hypothalamic ventromedial nucleus (VMN) in a neurocircuit that drives counterregulatory responses to hypoglycemia, including increased glucagon secretion. Among LPBN neurons in this circuit is a subset that expresses cholecystokinin (LPBNCCK neurons) and is tonically inhibited by leptin. Because uncontrolled diabetes is associated with both leptin deficiency and hyperglucagonemia, and because intracerebroventricular (ICV) leptin administration reverses both hyperglycemia and hyperglucagonemia in this setting, we hypothesized that deficient leptin inhibition of LPBNCCK neurons drives activation of this LPBN→VMN circuit and thereby results in hyperglucagonemia. Here, we report that although bilateral microinjection of leptin into the LPBN does not ameliorate hyperglycemia in rats with streptozotocin-induced diabetes mellitus (STZ-DM), it does attenuate the associated hyperglucagonemia and ketosis. To determine if LPBN leptin signaling is required for the antidiabetic effect of ICV leptin in STZ-DM, we studied mice in which the leptin receptor was selectively deleted from LPBNCCK neurons. Our findings show that although leptin signaling in these neurons is not required for the potent antidiabetic effect of ICV leptin, it is required for leptin-mediated suppression of diabetic hyperglucagonemia. Taken together, these findings suggest that leptin-mediated effects in animals with uncontrolled diabetes occur through actions involving multiple brain areas, including the LPBN, where leptin acts specifically to inhibit glucagon secretion and associated ketosis.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Glucagon/blood , Ketosis/metabolism , Leptin/pharmacology , Parabrachial Nucleus/drug effects , Animals , Blood Glucose , Injections, Intraventricular , Insulin/blood , Male , Mice , Neurons/drug effects , Neurons/metabolism , Parabrachial Nucleus/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...