Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(9): 105109, 2023 09.
Article in English | MEDLINE | ID: mdl-37517695

ABSTRACT

G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(ß,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.


Subject(s)
Cobamides , Methylmalonyl-CoA Mutase , Models, Molecular , Molecular Chaperones , Cobamides/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Guanosine Triphosphate/metabolism , Isomerases/chemistry , Isomerases/metabolism , Methylmalonyl-CoA Mutase/chemistry , Methylmalonyl-CoA Mutase/metabolism , Molecular Chaperones/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Cupriavidus/chemistry , Cupriavidus/enzymology , Protein Structure, Quaternary , Catalytic Domain , Coenzymes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...