Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Photonics ; 10(11): 3915-3928, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38027249

ABSTRACT

Dispersive Fourier transform is a characterization technique that allows directly extracting an optical spectrum from a time domain signal, thus providing access to real-time characterization of the signal spectrum. However, these techniques suffer from sensitivity and dynamic range limitations, hampering their use for special applications in, e.g., high-contrast characterizations and sensing. Here, we report on a novel approach to dispersive Fourier transform-based characterization using single-photon detectors. In particular, we experimentally develop this approach by leveraging mutual information analysis for signal processing and hold a performance comparison with standard dispersive Fourier transform detection and statistical tools. We apply the comparison to the analysis of noise-driven nonlinear dynamics arising from well-known modulation instability processes. We demonstrate that with this dispersive Fourier transform approach, mutual information metrics allow for successfully gaining insight into the fluctuations associated with modulation instability-induced spectral broadening, providing qualitatively similar signatures compared to ultrafast photodetector-based dispersive Fourier transform but with improved signal quality and spectral resolution (down to 53 pm). The technique presents an intrinsically unlimited dynamic range and is extremely sensitive, with a sensitivity reaching below the femtowatt (typically 4 orders of magnitude better than ultrafast dispersive Fourier transform detection). We show that this method can not only be implemented to gain insight into noise-driven (spontaneous) frequency conversion processes but also be leveraged to characterize incoherent dynamics seeded by weak coherent optical fields.

2.
Sci Rep ; 11(1): 18240, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521869

ABSTRACT

Beam self-cleaning (BSC) in graded-index (GRIN) multimode fibers (MMFs) has been recently reported by different research groups. Driven by the interplay between Kerr effect and beam self-imaging, BSC counteracts random mode coupling, and forces laser beams to recover a quasi-single mode profile at the output of GRIN fibers. Here we show that the associated self-induced spatiotemporal reshaping allows for improving the performances of nonlinear fluorescence (NF) microscopy and endoscopy using multimode optical fibers. We experimentally demonstrate that the beam brightness increase, induced by self-cleaning, enables two and three-photon imaging of biological samples with high spatial resolution. Temporal pulse shortening accompanying spatial beam clean-up enhances the output peak power, hence the efficiency of nonlinear imaging. We also show that spatiotemporal supercontinuum (SC) generation is well-suited for large-band NF imaging in visible and infrared domains. We substantiated our findings by multiphoton fluorescence imaging in both microscopy and endoscopy configurations.

3.
Sci Rep ; 10(1): 20481, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33235274

ABSTRACT

A low intensity light beam emerges from a graded-index, highly multimode optical fibre with a speckled shape, while at higher intensity the Kerr nonlinearity may induce a spontaneous spatial self-cleaning of the beam. Here, we reveal that we can generate two self-cleaned beams with a mutual coherence large enough to produce a clear stable fringe pattern at the output of a nonlinear interferometer. The two beams are pumped by the same input laser, yet are self-cleaned into independent multimode fibres. We thus prove that the self-cleaning mechanism preserves the beams' mutual coherence via a noise-free parametric process. While directly related to the initial pump coherence, the emergence of nonlinear spatial coherence is achieved without additional noise, even for self-cleaning obtained on different modes, and in spite of the fibre structural disorder originating from intrinsic imperfections or external perturbations. Our discovery may impact theoretical approaches on wave condensation, and open new opportunities for coherent beam combining.

4.
Biomed Opt Express ; 11(12): 7032-7052, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33408978

ABSTRACT

We report on a novel endomicroscope, to the best of our knowledge, designed for achieving full 4×4 Mueller polarimetric images of biological tissues through a fiber endoscope for medical diagnosis. The polarimetric technique is based on a previously published two-wavelength differential method (TWDM). A key component of the endomicroscope is a resonant fiber-based microprobe including a highly-selective fiber Bragg grating (FBG), free of detrimental polarimetric effects, photo written in the core of the fiber, near the output face. By means of the TWDM, and using the specially designed microprobe (diameter 2.9 mm, length 30 mm), full Mueller images of 250×250 pixels were produced at the rate of 1 image/2 s through a 2 m single mode fiber, paving the way to in vivo applications in polarimetric endomicroscopy.

5.
Opt Lett ; 44(1): 171-174, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30645577

ABSTRACT

We experimentally study polarization dynamics of Kerr beam self-cleaning in a graded-index multimode optical fiber. We show that spatial beam cleaning is accompanied by nonlinear polarization rotation and a significant increase of the degree of linear polarization.

6.
J Biophotonics ; 12(5): e201800276, 2019 05.
Article in English | MEDLINE | ID: mdl-30548419

ABSTRACT

A two-photon fluorescence lifetime (2P-FLIM) microendoscope, capable of energetic metabolism imaging through the intracellular nicotinamide adenine dinucleotide (NADH) autofluorescence, at sub-cellular resolution, is demonstrated. It exhibits readily usable characteristics such as convenient endoscope probe diameter (≈2 mm), fiber length (>5 m) and data accumulation rate (16 frames per second (fps)), leading to a FLIM refreshing rate of ≈0.1 to 1 fps depending on the sample. The spiral scanning image formation does not influence the instrument response function (IRF) characteristics of the system. Near table-top microscope performances are achieved through a comprehensive system including a home-designed spectro-temporal pulse shaper and a custom air-silica double-clad photonic crystal fiber, which enables to reach up to 40 mW of ≈100 fs pulses @ 760 nm with a 80 MHz repetition rate. A GRadient INdex (GRIN) lens provides a lateral resolution of 0.67 µm at the focus of the fiber probe. Intracellular NADH fluorescence lifetime data are finally acquired on cultured cells at 16 fps.


Subject(s)
Endoscopes , Microscopy, Fluorescence, Multiphoton/instrumentation , Animals , Equipment Design , HT29 Cells , Humans , NAD/metabolism , Rats , Tail , Tendons/diagnostic imaging
7.
Light Sci Appl ; 7: 10, 2018.
Article in English | MEDLINE | ID: mdl-30839624

ABSTRACT

Coherent Raman scattering microscopy is a fast, label-free, and chemically specific imaging technique that shows high potential for future in vivo optical histology. However, the imaging depth in tissues is limited to the sub-millimeter range because of absorption and scattering. Realization of coherent Raman imaging using a fiber endoscope system is a crucial step towards imaging deep inside living tissues and providing information that is inaccessible with current microscopy tools. Until now, the development of coherent Raman endoscopy has been hampered by several issues, mainly related to the fiber delivery of the excitation pulses and signal collection. Here, we present a flexible, compact, coherent Raman, and multimodal nonlinear endoscope (4.2 mm outer diameter, 71 mm rigid length) based on a resonantly scanned hollow-core Kagomé-lattice double-clad fiber. The fiber design enables distortion-less, background-free delivery of femtosecond excitation pulses and back-collection of nonlinear signals through the same fiber. Sub-micrometer spatial resolution over a large field of view is obtained by combination of a miniature objective lens with a silica microsphere lens inserted into the fiber core. We demonstrate high-resolution, high-contrast coherent anti-Stokes Raman scattering, and second harmonic generation endoscopic imaging of biological tissues over a field of view of 320 µm at a rate of 0.8 frames per second. These results pave the way for intraoperative label-free imaging applied to real-time histopathology diagnosis and surgery guidance.

8.
Opt Express ; 25(12): 13816-13821, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788923

ABSTRACT

Coherent combination of laser beams from 37 fiber amplifiers in a tiled aperture configuration has been achieved thanks to an innovative iterative process. The high efficiency as well as the speed of the phase control demonstrated the relevance of the method for phase locking of a large array of fiber lasers.

9.
Sci Rep ; 5: 18303, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26673905

ABSTRACT

We present a two-photon microendoscope capable of in vivo label-free deep-tissue high-resolution fast imaging through a very long optical fiber. First, an advanced light-pulse spectro-temporal shaping device optimally precompensates for linear and nonlinear distortions occurring during propagation within the endoscopic fiber. This enables the delivery of sub-40-fs duration infrared excitation pulses at the output of 5 meters of fiber. Second, the endoscopic fiber is a custom-made double-clad polarization-maintaining photonic crystal fiber specifically designed to optimize the imaging resolution and the intrinsic luminescence backward collection. Third, a miniaturized fiber-scanner of 2.2 mm outer diameter allows simultaneous second harmonic generation (SHG) and two-photon excited autofluorescence (TPEF) imaging at 8 frames per second. This microendoscope's transverse and axial resolutions amount respectively to 0.8 µm and 12 µm, with a field-of-view as large as 450 µm. This microendoscope's unprecedented capabilities are validated during label-free imaging, ex vivo on various fixed human tissue samples, and in vivo on an anesthetized mouse kidney demonstrating an imaging penetration depth greater than 300 µm below the surface of the organ. The results reported in this manuscript confirm that nonlinear microendoscopy can become a valuable clinical tool for real-time in situ assessment of pathological states.


Subject(s)
Diagnostic Imaging/methods , Endoscopy/methods , Kidney Diseases/pathology , Kidney/anatomy & histology , Microscopy, Fluorescence, Multiphoton/methods , Animals , Diagnostic Imaging/instrumentation , Endoscopy/instrumentation , Fibrosis/pathology , Humans , Lung/anatomy & histology , Mice , Microscopy, Fluorescence, Multiphoton/instrumentation , Nonlinear Dynamics , Optical Fibers , Reproducibility of Results , Time Factors
10.
ACS Appl Mater Interfaces ; 7(1): 51-6, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25545402

ABSTRACT

This paper presents the continuous-flowand single-step synthesis of a TiO2/MWCNT (multiwall carbon nanotubes) nanohybrid material. The synthesis method allows achieving high coverage and intimate interface between the TiO2particles and MWCNTs, together with a highly homogeneous distribution of nanotubes within the oxide. Such materials used as active layer in theporous photoelectrode of solid-state dye-sensitized solar cells leads to a substantial performance improvement (20%) as compared to reference devices.

11.
Opt Express ; 20(20): 22895-901, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-23037439

ABSTRACT

We present what we believe to be the first demonstration of spectral combining of multiple fiber lasers Q-switched by independent micro-electro-mechanical system (MEMS). By correlating the actuation of the individual MEMS devices, the associated Q-switched lasers can be operated in either synchronous or asynchronous modes in such a way that their overall combined output may result in high energy emission pulses or in laser emission with higher pulse repetition rate. In a proof-of-principle experiment, we demonstrate the combination of four individual Q-switched lasers (each of them operating at 20 kHz repetition rate) leading to a final laser system generating pulses with a repetition rate of 80 kHz.


Subject(s)
Fiber Optic Technology/instrumentation , Lasers , Lenses , Micro-Electrical-Mechanical Systems/instrumentation , Equipment Design , Equipment Failure Analysis , Miniaturization
12.
Opt Express ; 20(5): 5524-9, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418358

ABSTRACT

We present a novel Q-switched laser source using a micro-optical-electromechanical mirror (MOEM) designed for short pulse emission. It is based on a hybrid configuration including a passively Q-switched microchip laser coupled to a fiber cavity closed by a cantilever type MOEM acting as an active modulator. This specially designed mirror with a single reflecting gold membrane is switched by low bias voltage ~50 V (peak to peak). This device emits pulses at tunable repetition rates up to 1.6 kHz, with ~564 ps duration and 3.4 kW peak power, which constitutes the shortest pulse duration ever reported with MOEMs based pulsed lasers.


Subject(s)
Lasers , Lenses , Micro-Electrical-Mechanical Systems/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis
13.
Opt Lett ; 36(12): 2191-3, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21685963

ABSTRACT

We present what we believe to be the first fiber laser system that is actively mode-locked by a deformable micromirror. The micromirror device is placed within the laser cavity and performs a dual function of modulator and end-cavity mirror. The mode-locked laser provides ~1-ns-long pulses with 20 nJ/pulse energy at 5 MHz repetition rates.

14.
Opt Express ; 16(26): 22064-71, 2008 Dec 22.
Article in English | MEDLINE | ID: mdl-19104641

ABSTRACT

We present an Ytterbium fibre laser operating in the Q-switch regime by using a Micro- Opto- Electro- Mechanical System (MOEMS) of novel design. The cantilever-type micro-mirror is designed to generate short laser pulses with duration between 20 ns and 100 ns at repetition rates ranging from a few kilohertz up to 800 kHz. The bent profile of this new type of MOEMS ensures a high modulation rate of the laser cavity losses while keeping a high actuating frequency.

SELECTION OF CITATIONS
SEARCH DETAIL
...