Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(35): 41396-41404, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-32337970

ABSTRACT

Redox-active sites present at large concentrations as part of a solid support or dissolved as molecules in fluid solutions undergo reversible self-exchange electron-transfer reactions. These processes can be monitored using a variety of techniques. Chronoamperometry and cyclic voltammetry are common techniques used to interrogate this behavior for molecules bound to mesoporous thin films of wide-bandgap semiconductors and insulators. In order to use these techniques to obtain accurate values for apparent diffusion coefficients, which are proxies for rate constants for self-exchange electron transfer, it is imperative to take into consideration nonidealities in redox titrations, parasitic currents, and ohmic resistances. Using spectroelectrochemical measurements taken concurrently with measurements of chronoamperometry data, we show that the spectroscopic data is not confounded from effects of parasitic currents or electroinactive dyes. However, we show that the thickness of the thin film over the region that is optically probed by the measurements must be known. When each of these considerations is included in data analyses, calculated apparent diffusion coefficients are, within error, independent of the method used to obtain the data. These considerations help reconcile variations in apparent diffusion coefficients measured using different techniques that have been reported over the past several decades and allow correct analyses to be performed in the future, independent of the method used to obtain the data.

2.
J Am Chem Soc ; 139(34): 11726-11733, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28414912

ABSTRACT

Replacing passive ion-exchange membranes, like Nafion, with membranes that use light to drive ion transport would allow membranes in photoelectrochemical technologies to serve in an active role. Toward this, we modified perfluorosulfonic acid ionomer membranes with organic pyrenol-based photoacid dyes to sensitize the membranes to visible light and initiate proton transport. Covalent modification of the membranes was achieved by reacting Nafion sulfonyl fluoride poly(perfluorosulfonyl fluoride) membranes with the photoacid 8-hydroxypyrene-1,3,6-tris(2-aminoethylsulfonamide). The modified membranes were strongly colored and maintained a high selectivity for cations over anions. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and ion-exchange measurements together provided strong evidence of covalent bond formation between the photoacids and the polymer membranes. Visible-light illumination of the photoacid-modified membranes resulted in a maximum power-producing ionic photoresponse of ∼100 µA/cm2 and ∼1 mV under 40 Suns equivalent excitation with 405 nm light. In comparison, membranes that did not contain photoacids and instead contained ionically associated RuII-polypyridyl coordination compound dyes, which are not photoacids, exhibited little-to-no photoeffects (∼1 µA/cm2). These disparate photocurrents, yet similar yields for nonradiative excited-state decay from the photoacids and the RuII dyes, suggest temperature gradients were not likely the cause of the observed photovoltaic action from photoacid-modified membranes. Moreover, spectral response measurements supported that light absorption by the covalently bound photoacids was required in order to observe photoeffects. These results represent the first demonstration of photovoltaic action from an ion-exchange membrane and offer promise for supplementing the power demands of electrochemical processes with renewable sunlight-driven ion transport.

3.
Analyst ; 138(16): 4493-9, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23722232

ABSTRACT

Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.


Subject(s)
Coloring Agents/analysis , Lakes , Paint/analysis , Pigments, Biological/analysis , Spectrum Analysis, Raman/methods , Curcumin/analysis , Rhamnus/chemistry
4.
Anal Chem ; 84(18): 8006-12, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22897697

ABSTRACT

Surface-enhanced Raman scattering (SERS) spectroscopy is increasingly applied to the identification of organic colorants in cultural heritage objects because vibrational fingerprints can be measured from microscopic samples. However, the development of SERS into a reliable, broad-spectrum method for art analysis requires the study of a wide variety of organic and inorganic colorants as well as colorant mixtures in paint. Here, we demonstrate reliable protocols for SERS-based identification of insoluble indigo, Prussian blue (PB), and mixtures thereof in aged painted surfaces. The use of simple salts and acids for sample pretreatment is evaluated. High-quality SERS spectra of PB and indigo are elucidated upon sample pretreatment with H(2)SO(4). In several cases, SERS spectra of the colorants could not be obtained without sample pretreatment. We demonstrate the use of H(2)SO(4) to solubilize PB as well as perform an in situ conversion of insoluble indigo to soluble indigo carmine (IC) on indigo, indigo oil paint, and actual samples from historic painted surfaces. A microscopic H(2)SO(4)-treated sample from the Portrait of Evelyn Byrd produced a SERS spectrum that is consistent with a mixture of PB and IC. To our knowledge, this work represents the first SERS spectrum of indigo in oil paint and the first simultaneous detection of a mixture of blue organic and inorganic colorants in a single art sample using SERS.

SELECTION OF CITATIONS
SEARCH DETAIL
...