Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Clin Med ; 9(11)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212896

ABSTRACT

Current antifibrinolytic agents reduce blood loss by inhibiting plasmin active sites (e.g., aprotinin) or by preventing plasminogen/tissue plasminogen activator (tPA) binding to fibrin clots (e.g., ε-aminocaproic acid and tranexamic acid); however, they have adverse side effects. Here, we expressed 60-residue (NH2NAE…IEKCOOH) Kunitz domain1 (KD1) mutants of human tissue factor pathway inhibitor type-2 that inhibit plasmin as well as plasminogen activation. A single (KD1-L17R-KCOOH) and a double mutant (KD1-Y11T/L17R- KCOOH) were expressed in Escherichia coli as His-tagged constructs, each with enterokinase cleavage sites. KD1-Y11T/L17R-KCOOH was also expressed in Pichia pastoris. KD1-Y11T/L17R-KCOOH inhibited plasmin comparably to aprotinin and bound to the kringle domains of plasminogen/plasmin and tPA with Kd of ~50 nM and ~35 nM, respectively. Importantly, compared to aprotinin, KD1-L17R-KCOOH and KD1-Y11T/L17R-KCOOH did not inhibit kallikrein. Moreover, the antifibrinolytic potential of KD1-Y11T/L17R-KCOOH was better than that of KD1-L17R-KCOOH and similar to that of aprotinin in plasma clot-lysis assays. In thromboelastography experiments, KD1-Y11T/L17R-KCOOH was shown to inhibit fibrinolysis in a dose dependent manner and was comparable to aprotinin at a higher concentration. Further, KD1-Y11T/L17R-KCOOH did not induce cytotoxicity in primary human endothelial cells or fibroblasts. We conclude that KD1-Y11T/L17R-KCOOH is comparable to aprotinin, the most potent known inhibitor of plasmin and can be produced in large amounts using Pichia.

2.
Anal Biochem ; 598: 113701, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32268127

ABSTRACT

We previously reported on a novel fibrin matrix having increased viscoelastic strength derived from human plasma fibronectin (pFN) and γγ'-fibrinogen (γγ'-FI). Here we use high pressure size exclusion chromatography (HPSEC) and dynamic light scattering (DLS) to observe interactions between the linearly extended conformation of γγ'-FI and random coiled pFN. Distinct γγ'-FI:pFN subpopulations were fractionated where each maintained unique retention times when individually reprocessed by HPSEC. The hydrodynamic sizes by HPSEC and DLS for these reprocessed subfractions were intermediate to that of pure γγ'-FI and pFN. SDS-PAGE analysis showed that the majority of these subfractions contained intact γγ'-FI and pFN. Importantly, after disruption and isolation using Gelatin Sepharose affinity chromatography, new complexes rapidly formed between pFN and γγ'-FI when mixed back together. This also occurred in analogous mixing experiments between Des-Aα γγ'-FI and pFN where both Aα-chains are reduced by about 15 kDa due to proteolysis. The reversible complexation observed using HPSEC and DLS was not observed in prior studies using SPR indicating that unrestricted freedom of motion is needed to efficiently form these compact associations. The presence of a γ' chain, but not the carboxy terminal portions of either Aα chain are needed for complexation phenomena between pFN and γγ'-FI.


Subject(s)
Fibrinogen/analysis , Fibronectins/blood , Chromatography, Gel , Dynamic Light Scattering , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...