Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 308: 119627, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35714791

ABSTRACT

Freshwater microbes play a crucial role in the global carbon cycle. Anthropogenic stressors that lead to changes in these microbial communities are likely to have profound consequences for freshwater ecosystems. Using field data from the coordinated sampling of 617 lakes, ponds, rivers, and streams by citizen scientists, we observed linkages between microbial community composition, light and chemical pollution, and greenhouse gas concentration. All sampled water bodies were net emitters of CO2, with higher concentrations in running waters, and increasing concentrations at higher latitudes. Light pollution occurred at 75% of sites, was higher in urban areas and along rivers, and had a measurable effect on the microbial alpha diversity. Genetic elements suggestive of chemical stress and antimicrobial resistances (IntI1, blaOX58) were found in 85% of sites, and were also more prevalent in urban streams and rivers. Light pollution and CO2 were significantly related to microbial community composition, with CO2 inversely related to microbial phototrophy. Results of synchronous nationwide sampling indicate that pollution-driven alterations to the freshwater microbiome lead to changes in CO2 production in natural waters and highlight the vulnerability of running waters to anthropogenic stressors.


Subject(s)
Ecosystem , Microbiota , Carbon Dioxide/analysis , Environmental Monitoring/methods , Lakes , Rivers
2.
Front Microbiol ; 9: 1044, 2018.
Article in English | MEDLINE | ID: mdl-29915564

ABSTRACT

In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photo-heterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a 13C-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems.

3.
Sci Total Environ ; 621: 1233-1242, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29070450

ABSTRACT

Perennial, temperate, low-order streams are predicted to become intermittent as a result of irregular droughts caused by global warming and increased water demand. We hypothesize that stream metabolism changes caused by irregular droughts are linked to the shading and bed sediment structure of temperate streams. We set up 16 outdoor experimental streams with low or high shade conditions and streambeds either with alternating sorted patches of gravel and sand or homogeneous gravel-sand mix sediment structures. We assessed community respiration (CR), net ecosystem production (NEP) and periphyton biomass and structure (diatoms, green algae, cyanobacteria) in the course of 6weeks colonization, 6weeks desiccation, and 2.5weeks after rewetting. The heterotroph to autotroph (H:A) and fungi to bacteria (F:B) ratios in the microbial biofilm community were assessed at the end of the colonization and rewetting phases. Streams with different bed sediment structure were functionally similar; their metabolism under desiccation was controlled solely by light availability. During flow recession, all streams showed net heterotrophy. As desiccation progressed, NEP and CR decreased to zero. Desiccation altered the periphyton composition from predominantly diatoms to green algae and cyanobacteria, particularly in streams with low shade and mixed sediments. Rapid post-drought resilience of NEP was accompanied by high cyanobacteria and green algae growth in low shade, but poor total periphyton growth in high shade streams. Variable periphyton recovery was followed by increased H:A in relation to shading, and decreased F:B in relation to sediments structure. These shifts resulted in poor CR recovery compared to the colonization phase, suggesting a link between CR resilience and microbial composition changes. The links between drought effects, post-drought recovery, shading level, and streambed structure reveal the importance of low-order stream management under a changing climate and land use to mitigate the future impact of unpredictable infrequent droughts on stream metabolism in temperate ecosystems.

4.
ISME J ; 11(2): 415-425, 2017 02.
Article in English | MEDLINE | ID: mdl-27983721

ABSTRACT

Ecological functions of fungal and bacterial decomposers vary with environmental conditions. However, the response of these decomposers to particulate organic matter (POM) quality, which varies widely in aquatic ecosystems, remains poorly understood. Here we investigated how POM pools of substrates of different qualities determine the relative contributions of aquatic fungi and bacteria to terrigenous carbon (C) turnover. To this end, surface sediments were incubated with different POM pools of algae and/or leaf litter. 13C stable-isotope measurements of C mineralization were combined with phospholipid analysis to link the metabolic activities and substrate preferences of fungal and bacterial heterotrophs to dynamics in their abundance. We found that the presence of labile POM greatly affected the dominance of bacteria over fungi within the degrader communities and stimulated the decomposition of beech litter primarily through an increase in metabolic activity. Our data indicated that fungi primarily contribute to terrigenous C turnover by providing litter C for the microbial loop, whereas bacteria determine whether the supplied C substrate is assimilated into biomass or recycled back into the atmosphere in relation to phosphate availability. Thus, this study provides a better understanding of the role of fungi and bacteria in terrestrial-aquatic C cycling in relation to environmental conditions.


Subject(s)
Bacteria/metabolism , Carbon/metabolism , Fungi/metabolism , Geologic Sediments/microbiology , Biomass , Carbon Cycle , Carbon Isotopes/analysis , Ecosystem , Plant Leaves/microbiology , Stramenopiles/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...