Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38695719

ABSTRACT

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Subject(s)
Microglia , Receptors, GABA-A , Sleep, Slow-Wave , Synapses , Tumor Necrosis Factor-alpha , Animals , Male , Mice , Memory Consolidation , Mice, Inbred C57BL , Microglia/metabolism , Neuronal Plasticity/physiology , Receptors, GABA-A/metabolism , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Signal Transduction , Sleep/physiology , Synapses/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Cell Rep ; 41(3): 111487, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261004

ABSTRACT

The medial prefrontal cortex (mPFC) is necessary for executing many learned associations between stimuli and movement. It is unclear, however, how activity in the mPFC evolves across learning, and how this activity correlates with sensory stimuli and the learned movements they evoke. To address these questions, we record cortical activity with widefield calcium imaging while mice learned to associate a visual stimulus with a forelimb movement. After learning, the mPFC shows stimulus-evoked activity both during task performance and during passive viewing, when the stimulus evokes no action. This stimulus-evoked activity closely tracks behavioral performance across training, with both exhibiting a marked increase between days when mice first learn the task, followed by a steady increase with further training. Electrophysiological recordings localized this activity to the secondary motor and anterior cingulate cortex. We conclude that learning a visuomotor task promotes a route for visual information to reach the prefrontal cortex.


Subject(s)
Calcium , Learning , Animals , Mice , Cytoplasm , Movement , Prefrontal Cortex
3.
Nature ; 591(7850): 420-425, 2021 03.
Article in English | MEDLINE | ID: mdl-33473213

ABSTRACT

The cortex projects to the dorsal striatum topographically1,2 to regulate behaviour3-5, but spiking activity in the two structures has previously been reported to have markedly different relations to sensorimotor events6-9. Here we show that the relationship between activity in the cortex and striatum is spatiotemporally precise, topographic, causal and invariant to behaviour. We simultaneously recorded activity across large regions of the cortex and across the width of the dorsal striatum in mice that performed a visually guided task. Striatal activity followed a mediolateral gradient in which behavioural correlates progressed from visual cue to response movement to reward licking. The summed activity in each part of the striatum closely and specifically mirrored activity in topographically associated cortical regions, regardless of task engagement. This relationship held for medium spiny neurons and fast-spiking interneurons, whereas the activity of tonically active neurons differed from cortical activity with stereotypical responses to sensory or reward events. Inactivation of the visual cortex abolished striatal responses to visual stimuli, supporting a causal role of cortical inputs in driving the striatum. Striatal visual responses were larger in trained mice than untrained mice, with no corresponding change in overall activity in the visual cortex. Striatal activity therefore reflects a consistent, causal and scalable topographical mapping of cortical activity.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/physiology , Corpus Striatum/cytology , Corpus Striatum/physiology , Animals , Female , Interneurons/metabolism , Learning , Male , Mice , Neurons/metabolism , Photic Stimulation , Psychomotor Performance , Reward , Sensorimotor Cortex/physiology , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...