Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38740177

ABSTRACT

The Macrobrachium amazonicum complex is composed of at least the Macrobrachium amazonicum and Macrobrachium pantanalense species, with the latter described from specimens originally identified as part of an endemic M. amazonicum population in the Brazilian Pantanal region. While there may be a reproductive barrier between these two Macrobrachium species, both are phylogenetically close, with small genetic distance. However, there is currently no available biochemical information of Macrobrachium pantanalense (Na+, K+)-ATPase. Here, we report the kinetic characteristics of the gill (Na+, K+)-ATPase in two populations of M. pantanalense from Baiazinha Lagoon (Miranda, MS, Brazil) and Araguari River (Uberlândia, MG, Brazil), and compare them with Macrobrachium amazonicum populations from the Paraná-Paraguay River Basin. (Na+, K+)-ATPase activities were 67.9 ± 3.4 and 93.3 ± 4.1 nmol Pi min-1 mg-1 protein for the Baiazinha Lagoon and Araguari River populations, respectively. Two ATP hydrolyzing sites were observed for the Araguari River population while a single ATP site was observed for the Baiazinha Lagoon shrimps. Compared to the Araguari River population, a 3-fold greater apparent affinity for Mg2+ and Na+ was estimated for the Baiazinha Lagoon population, but no difference in K+ affinity and ouabain inhibition was seen. The kinetic differences observed in the gill (Na+, K+)-ATPase between the two populations of M. pantanalense, compared with those of various M. amazonicum populations, highlight interspecific divergence within the Macrobrachium genus, now examined from a biochemical perspective.


Subject(s)
Gills , Palaemonidae , Sodium-Potassium-Exchanging ATPase , Animals , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Palaemonidae/genetics , Palaemonidae/enzymology , Gills/metabolism , Gills/enzymology , Brazil , Rivers , Kinetics
2.
Article in English | MEDLINE | ID: mdl-37741603

ABSTRACT

We used the gill (Na+, K+)-ATPase as a molecular marker to provide a comprehensive kinetic analysis of the effects of Co2+in vitro on the modulation of K+-phosphatase activity in the Blue crab Callinectes danae. Co2+ can stimulate or inhibit K+-phosphatase activity. With Mg2+, K+-phosphatase activity is almost completely inhibited by Co2+. Co2+ stimulates K+-phosphatase activity similarly to Mg2+ although with a ≈4.5-fold greater affinity. At saturating Mg2+ concentrations, Mg2+ displaces bound Co2+ from the Mg2+-binding site in a concentration dependent manner, but Co2+ cannot displace Mg2+ from its binding site even at millimolar concentrations. Saturation by Co2+ of the Mg2+ binding site does not affect pNPP recognition by the enzyme. Substitution of Mg2+ by Co2+ slightly increases enzyme affinity for K+ and NH4+. Independently of Mg2+, inhibition by ouabain or sodium ions is unaffected by Co2+. Investigation of gill (Na+, K+)-ATPase K+-phosphatase activity provides a reliable tool to examine the kinetic effects of Co2+ with and without Na+ and ATP. Given that the toxic effects of Co2+ at the molecular level are poorly understood, these findings advance our knowledge of the mechanism of action of Co2+ on the crustacean gill (Na+, K+)-ATPase.


Subject(s)
Brachyura , Animals , Sodium-Potassium-Exchanging ATPase/metabolism , Kinetics , Cobalt/toxicity , Gills/metabolism , Ions , Sodium/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/pharmacology
3.
Article in English | MEDLINE | ID: mdl-37517460

ABSTRACT

This investigation examines the kinetic characteristics and effect of acclimation to a brackish medium (21 ‰S) on gill V(H+)-ATPase activity in two hololimnetic populations of M. amazonicum. We also investigate the cellular immunolocalization of the enzyme. Immunofluorescence findings demonstrate that the V(H+)-ATPase c-subunit is distributed in the apical pillar cells of shrimps in fresh water but is absent after acclimation to 21 ‰S for 10 days. V(H+)-ATPase activity from the Tietê River population is ≈50% greater than the Grande River population, comparable to a wild population from the Santa Elisa Reservoir, but is 2-fold less than in cultivated shrimps. V(H+)-ATPase activity in the Tietê and the Grande River shrimps is abolished after 21 ‰S acclimation. The apparent affinities of the V(H+)-ATPase for ATP (0.27 ± 0.04 and 0.16 ± 0.03 mmol L-1, respectively) and Mg2+ (0.28 ± 0.05 and 0.14 ± 0.02 mmol L-1, respectively) are similar in both populations. The absence of V(H+)-ATPase activity in salinity-acclimated shrimps and its apical distribution in shrimps in fresh water underpins the importance of the crustacean V(H+)-ATPase for ion uptake in fresh water.


Subject(s)
Decapoda , Palaemonidae , Animals , Rivers , Gills/metabolism , Proton-Translocating ATPases , Decapoda/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
4.
Biochim Biophys Acta Biomembr ; 1864(10): 183982, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35671812

ABSTRACT

The geographical distribution of aquatic crustaceans is determined by ambient factors like salinity that modulate their biochemistry, physiology, behavior, reproduction, development and growth. We investigated the effects of exogenous pig FXYD2 peptide and endogenous protein kinases A and C on gill (Na+, K+)-ATPase activity, and characterized enzyme kinetic properties in a freshwater population of Macrobrachium amazonicum in fresh water (<0.5 ‰ salinity) or acclimated to 21 ‰S. Stimulation by FXYD2 peptide and inhibition by endogenous kinase phosphorylation are salinity-dependent. While without effect in shrimps in fresh water, the FXYD2 peptide stimulated activity in salinity-acclimated shrimps by ≈50 %. PKA-mediated phosphorylation inhibited gill (Na+, K+)-ATPase activity by 85 % in acclimated shrimps while PKC phosphorylation markedly inhibited enzyme activity in freshwater- and salinity-acclimated shrimps. The (Na+, K+)-ATPase in salinity-acclimated shrimp gills hydrolyzed ATP at a Vmax of 54.9 ± 1.8 nmol min-1 mg-1 protein, corresponding to ≈60 % that of freshwater shrimps. Mg2+ affinity increased with salinity acclimation while K+ affinity decreased. (Ca2+, Mg2+)-ATPase activity increased while V(H+)- and Na+- or K+-stimulated activities decreased on salinity acclimation. The 120-kDa immunoreactive band expressed in salinity-acclimated shrimps suggests nonspecific α-subunit phosphorylation by PKA and/or PKC. These alterations in (Na+, K+)-ATPase kinetics in salinity-acclimated M. amazonicum may result from regulatory mechanisms mediated by phosphorylation via protein kinases A and C and the FXYD2 peptide rather than through the expression of a different α-subunit isoform. This is the first demonstration of gill (Na+, K+)-ATPase regulation by protein kinases in freshwater shrimps during salinity challenge.


Subject(s)
Decapoda , Palaemonidae , Animals , Decapoda/metabolism , Fresh Water , Gills/metabolism , Ions/metabolism , Palaemonidae/metabolism , Peptides/metabolism , Protein Kinases/metabolism , Salinity , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Swine
5.
Aquat Toxicol ; 246: 106144, 2022 May.
Article in English | MEDLINE | ID: mdl-35339850

ABSTRACT

Water quality is essential for successful aquaculture. For freshwater shrimp farming, ammonia concentrations can increase considerably, even when culture water is renewed frequently, consequently increasing the risk of ammonia intoxication. We investigated ammonia lethality (LC50-96 h) in a hololimnetic population of the Amazon River shrimp Macrobrachium amazonicum from the Paraná/Paraguay River basin, including the effects of exposure to 4.93 mg L-1 total ammonia concentration on gill (Na+, K+)-ATPase activity. The mean LC50-96 h was 49.27 mg L-1 total ammonia, corresponding to 1.8 mg L-1 un-ionized ammonia. Except for NH4+ affinity that increased 2.5-fold, that of the gill (Na+, K+)-ATPase for ATP, Mg2+, Na+, K+ and ouabain was unchanged after ammonia exposure. Western blotting of gill microsomal preparations from fresh caught shrimps showed a single immunoreactive band of ≈110 kDa, corresponding to the gill (Na+, K+)-ATPase α-subunit. Ammonia exposure increased (Na+, K+)-ATPase activity by ≈25%, coincident with an additional 130 kDa α-subunit immunoreactive band, and increased K+-stimulated and V(H+)-ATPase activities by ≈2.5-fold. Macrobrachium amazonicum from the Paraná/Paraguay River basin is as tolerant to ammonia as are other Amazon River basins populations, showing toxicity comparable to that of marine crustaceans.


Subject(s)
Palaemonidae , Water Pollutants, Chemical , Ammonia/toxicity , Animals , Gills , Ions , Kinetics , Rivers , Sodium/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Water Pollutants, Chemical/toxicity
6.
Article in English | MEDLINE | ID: mdl-32956795

ABSTRACT

We analyzed the modulation by exogenous FXYD2 peptide and by endogenous protein kinases A and C, and Ca2+-calmodulin-dependent kinase, of gill (Na+, K+)-ATPase activity in the semi-terrestrial mangrove crab Ucides cordatus after 10-days acclimation to different salinities. Osmotic and ionic regulatory ability and gill (Na+, K+)-ATPase activity also were evaluated. (Na+, K+)-ATPase activity is stimulated by exogenous pig kidney FXYD2 peptide, while phosphorylation by endogenous protein kinases A and C and Ca2+/calmodulin-dependent kinase inhibits activity. Stimulation by FXYD2 and inhibition by protein kinase C and Ca2+/calmodulin-dependent kinase are salinity-dependent. This is the first demonstration of inhibitory phosphorylation of a crustacean (Na+, K+)-ATPase by Ca2+/calmodulin-dependent kinase. At low salinities, the (Na+, K+)-ATPase exhibited a single, low affinity ATP-binding site that showed Michaelis-Menten behavior. Above 18‰S, a second, cooperative, high affinity ATP-binding site appeared, corresponding to 10-20% of total (Na+, K+)-ATPase activity. Hemolymph osmolality was strongly hyper-/hypo-regulated in crabs acclimated at 2 to 35‰S. Cl- was well hyper-/hypo-regulated although Na+ much less so, becoming isonatremic at elevated salinity. (Na+, K+)-ATPase activity was greatest in isosmotic crabs (26‰S), decreasing notably at 35‰S and also diminishing progressively from 18to 2‰S. Hyper-osmoregulation in U. cordatus showed little dependence on gill (Na+, K+)-ATPase activity, suggesting a role for other ion transporters. These findings reveal that the salinity acclimation response in U. cordatus consists of a suite of enzymatic and osmoregulatory adjustments that maintain its osmotic homeostasis in a challenging, mangrove forest environment.


Subject(s)
Brachyura/metabolism , Oligopeptides/pharmacology , Osmoregulation/drug effects , Protein Kinases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Acclimatization/drug effects , Amino Acid Sequence , Animals , Brachyura/physiology , Female , Hemolymph/drug effects , Hemolymph/metabolism , Male , Oligopeptides/chemistry , Osmolar Concentration , Phosphorylation/drug effects , Salinity , Swine
7.
J Membr Biol ; 253(3): 229-245, 2020 06.
Article in English | MEDLINE | ID: mdl-32440867

ABSTRACT

We provide a kinetic characterization of (Na+, K+)-ATPase activity in a posterior gill microsomal fraction from the grapsid crab Goniopsis cruentata. (Na+, K+)-ATPase activity constitutes 95% of total ATPase activity, and sucrose density centrifugation reveals an ATPase activity peak between 25 and 35% sucrose, distributed into two, partially separated protein fractions. The (Na+, K+)-ATPase α-subunit is localized throughout the ionocyte cytoplasm and has an Mr of ≈ 10 kDa and hydrolyzes ATP obeying cooperative kinetics. Low (VM = 186.0 ± 9.3 nmol Pi min-1 mg-1 protein and K0.5 = 0.085 ± 0.004 mmol L-1) and high (VM = 153.4 ± 7.7 nmol Pi min-1 mg-1 protein and K0.5 = 0.013 ± 0.0006 mmol L-1) affinity ATP binding sites were characterized. At low ATP concentrations, excess Mg2+ stimulates the enzyme, triggering exposure of a high-affinity binding site that accounts for 50% of (Na+, K+)-ATPase activity. Stimulation by Mg2+ (VM = 425.9 ± 25.5 nmol Pi min-1 mg-1 protein, K0.5 = 0.16 ± 0.01 mmol L-1), K+ (VM = 485.3 ± 24.3 nmol Pi min-1 mg-1 protein, K0.5 = 0.9 ± 0.05 mmol L-1), Na+ (VM = 425.0 ± 23.4 nmol Pi min-1 mg-1 protein, K0.5 = 5.1 ± 0.3 mmol L-1) and NH4+ (VM = 497.9 ± 24.9 nmol Pi min-1 mg-1 protein, K0.5 = 9.7 ± 0.5 mmol L-1) obeys cooperative kinetics. Ouabain inhibits up to 95% of ATPase activity with KI = 196.6 ± 9.8 µmol L-1. This first kinetic characterization of the gill (Na+, K+)-ATPase in Goniopsis cruentata enables better comprehension of the biochemical underpinnings of osmoregulatory ability in this semi-terrestrial mangrove crab.


Subject(s)
Brachyura/metabolism , Chemical Phenomena , Gills/metabolism , Magnesium/chemistry , Magnesium/metabolism , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Enzyme Activation , Microsomes , Phosphorylation
8.
Article in English | MEDLINE | ID: mdl-30936021

ABSTRACT

We examined the effects of exogenous dopamine on gill (Na+, K+)-ATPase activity in vitro in microsomal preparations from juvenile or adult freshwater shrimp, Macrobrachium amazonicum. Dopamine had no effect on enzyme activity in juveniles but stimulated activity in adult shrimp gills by ≈35%. Stimulation of the gill (Na+, K+)-ATPase in adult shrimps by 100 mmol L-1 dopamine was characterized kinetically by varying ATP, MgATP, and Na+ and K+ concentrations, together with inhibition by ouabain. Dopamine stimulated ATP hydrolysis by ≈40% obeying Michaelis-Menten kinetics, reaching VM = 190.5 ±â€¯15.7 nmol Pi min-1 mg-1 protein, KM remaining unaltered. Stimulation by Na+ (≈50%) and K+ (≈25%) revealed distinct kinetic profiles: although KM values were similar, Na+ stimulation followed cooperative kinetics, contrasting with the Michaelian kinetics seen for K+. Stimulation by MgATP increased activity by ≈30% with little change in KM. Similar saturation profiles were seen for ouabain inhibition with very similar calculated KI values. Our findings suggest that dopamine may be involved in hemolymph sodium homeostasis by directly binding to the gill (Na+, K+)-ATPase at a site different from ouabain, thus stimulating enzyme activity in an ontogenetic stage-specific manner. However, dopamine binding does not affect enzyme affinity for cations and ouabain. This is the first report of the direct action of dopamine in stimulating the crustacean gill (Na+, K+)-ATPase.


Subject(s)
Dopamine/pharmacology , Gills/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Adenosine Triphosphate/metabolism , Animals , Fresh Water , Gills/metabolism , Palaemonidae/drug effects , Palaemonidae/metabolism , Potassium/metabolism , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/chemistry
9.
Article in English | MEDLINE | ID: mdl-30267892

ABSTRACT

We provide a kinetic characterization of (Na+, K+)-ATPase activity in a posterior gill microsomal fraction from a hololimnetic population of the diadromous Amazon River shrimp Macrobrachium amazonicum. Sucrose density gradient centrifugation reveals two distinct membrane fractions showing considerable (Na+, K+)ATP-ase activity, but also containing other microsomal ATPases. Only a single immune-reactive (Na+, K+)-ATPase with Mr of ≈110 kDa is present that hydrolyzes ATP with VM = 130.3 ±â€¯4.8 nmol Pi min-1 mg protein-1 and K0.5 = 0.065 ±â€¯0.00162 mmol L-1, exhibiting site-site interactions. Stimulation by Na+ (VM = 127.5 ±â€¯5.3 nmol Pi min-1 mg protein-1, K0.5 = 5.3 ±â€¯0.42 mmol L-1), Mg2+ (VM = 130.6 ±â€¯6.8 nmol Pi min-1 mg protein-1, K0.5 = 0.33 ±â€¯0.042 mmol L-1), K+ (VM = 126.7 ±â€¯7.7 nmol Pi min-1 mg protein-1, K0.5 = 0.65 ±â€¯0.0079 mmol L-1) and NH4+ (VM = 134.5 ±â€¯8.6 nmol Pi min-1 mg protein-1, K0.5 = 1.28 ±â€¯0.44 mmol L-1) also obeys cooperative kinetics. Ouabain (KI = 0.18 ±â€¯0.058 mmol L-1) inhibits total ATPase activity by ≈70%. This study reveals considerable differences in the kinetic characteristics of the gill (Na+, K+)-ATPase in a hololimnetic population that appear to result from the adaptation of diadromous Macrobrachium amazonicum populations to different limnic habitats.


Subject(s)
Arthropod Proteins/metabolism , Microsomes/enzymology , Palaemonidae/enzymology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Arthropod Proteins/antagonists & inhibitors , Biocatalysis , Brazil , Enzyme Inhibitors/pharmacology , Gills/enzymology , Gills/growth & development , Gills/physiology , Microsomes/drug effects , Ouabain/pharmacology , Palaemonidae/cytology , Palaemonidae/growth & development , Palaemonidae/physiology , Rivers , Salt Tolerance , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...