Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36628303

ABSTRACT

Introduction: Chimeric antigen receptor (CAR) T-cell therapies are novel immunotherapies for the treatment of hematologic malignancies. They are administered in specialized centers by a multidisciplinary team and require the careful coordination of all steps involved in manufacturing and using cellular therapies. The Maturity Model (MM) is a tool developed and used for assessing the effectiveness of a variety of activities. In healthcare, it may assist clinicians in the gradual improvement of patient management with CAR T-cell therapy and other complex treatments. Methods: The START CAR-T project was initiated to investigate the potential of a MM in the setting of CAR T-cell therapy. Four Italian clinics participated in the creation of a dedicated MM. Following the development and test of this MM, its validity and generalizability were further tested with a questionnaire submitted to 18 Italian centers. Results: The START CAR-T MM assessed the maturity level of clinical sites, with a focus on organization, process, and digital support. For each area, the model defined four maturity steps, and indicated the actions required to evolve from a basic to an advanced status. The application of the MM to 18 clinical sites provided a description of the maturity level of Italian centers with regard to the introduction of CAR T-cell therapy. Conclusion: The START CAR-T MM appears to be a useful and widely applicable tool. It may help centers optimize many aspects of CAR T-cell therapy and improve patient access to this novel treatment option.

2.
Molecules ; 26(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809185

ABSTRACT

INTRODUCTION: Alpha-galactosidase (α-Gal) is an enzyme responsible for the hydrolyzation of glycolipids and glycoprotein commonly found in dietary sources. More than 20% of the general population suffers from abdominal pain or discomfort caused by intestinal gas and by indigested or partially digested food residuals. Therefore, α-Gal is used in dietary supplements to reduce intestinal gases and help complex food digestion. Marketed enzyme-containing dietary supplements must be produced in accordance with the Food and Drug Administration (FDA) regulations for Current Good Manufacturing Practice (cGMPs). AIM: in this work we illustrated the process used to develop and validate a spectrophotometric enzymatic assay for α-Gal activity quantification in dietary supplements. METHODS: The validation workflow included an initial statistical-phase optimization of materials, reagents, and conditions, and subsequently a comparative study with another fluorimetric assay. A final validation of method performance in terms of specificity, linearity, accuracy, intermediate-precision repeatability, and system precision was then executed. RESULTS AND CONCLUSIONS: The proven method achieved good performance in the quantitative determination of α-Gal activity in commercial food supplements in accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals (ICH) guidelines and is suitable as a rapid in-house quality control test.


Subject(s)
Dietary Supplements/analysis , alpha-Galactosidase/analysis , Dietary Supplements/standards , Enzyme Stability , Fluorometry/methods , Food Analysis/methods , Food Analysis/standards , Food Analysis/statistics & numerical data , Humans , Laboratories , Quality Control , Spectrophotometry/methods , United States , United States Food and Drug Administration , alpha-Galactosidase/standards
SELECTION OF CITATIONS
SEARCH DETAIL