Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Evol Biol ; 34(5): 830-844, 2021 05.
Article in English | MEDLINE | ID: mdl-33714223

ABSTRACT

Ecogeographical displacement of homoploid hybrid lineages from their parents is well documented and considered an important mechanism to achieve reproductive isolation. In this study, we investigated the origin of the flowering plant species Sempervivum tectorum in the Massif Central (France) through homoploid hybridization between lineages of the species from the Rhine Gorge area (Germany) and the Pyrenees (France). We used genotyping-by-sequencing genetic data as evidence for the hybrid origin of the Massif Central lineage, and WorldClim climatic data and soil pH and soil temperature data collected by us for ecological niche and species distribution modelling. We could show that the Massif Central lineage shows hybrid admixture and that the niche of this lineage is significantly different from those of the parental lineages. In comparison with the parental niches, different variables of the niche of the hybrid lineage are intermediate, parental-combined or extreme. The different niche of the Massif Central populations thus can plausibly be interpreted as hybridization-derived. Our species distribution modelling for the Last Glacial Maximum and Mid-Holocene showed that the potential distribution of the hybrid lineage at the likely time of its origin in the Quaternary possibly was parapatric in relation to the largely sympatric distributions of the parental lineages. We hypothesize that reproductive isolation of the hybrid lineage from the parental lineages resulted from the segregation of distribution ranges by a differential response of the three lineages to a warming climate.


Subject(s)
Climate Change , Crassulaceae/genetics , Hybridization, Genetic , Models, Biological , Reproductive Isolation , Adaptation, Biological , Ecosystem , Europe , Phylogeography , Ploidies
2.
PeerJ ; 5: e3582, 2017.
Article in English | MEDLINE | ID: mdl-28828237

ABSTRACT

Phylogeographic analyses of the gall fly Urophora cardui have in earlier studies based on allozymes and mtDNA identified small-scale, parapatrically diverged populations within an expanding Western Palearctic population. However, the low polymorphism of these markers prohibited an accurate delimitation of the evolutionary origin of the parapatric divergence. Urophora cardui from the Western Palearctic have been introduced into Canada as biological control agents of the host plant Cirsium arvense. Here, we characterise 12 microsatellite loci with hexa-, penta- and tetra-nucleotide repeat motifs and report a genotyping-by-sequencing SNP protocol. We test the markers for genetic variation among three parapatric U. cardui populations. Microsatellite variability (N = 59 individuals) was high: expected heterozygosity/locus/population (0.60-0.90), allele number/locus/population (5-21). One locus was alternatively sex-linked in males or females. Cross-species amplification in the sister species U. stylata was successful or partially successful for seven loci. For genotyping-by-sequencing (N = 18 individuals), different DNA extraction methods did not affect data quality. Depending on sequence sorting criteria, 1,177-2,347 unlinked SNPs and 1,750-4,469 parsimony informative sites were found in 3,514-5,767 loci recovered after paralog filtering. Both marker systems quantified the same population partitions with high probabilities. Many and highly differentiated loci in both marker systems indicate genome-wide diversification and genetically distinct populations.

3.
Evol Appl ; 10(4): 338-347, 2017 04.
Article in English | MEDLINE | ID: mdl-28352294

ABSTRACT

The consequences of emerging marine diseases on the evolutionary trajectories of affected host populations in the marine realm are largely unexplored. Evolution in response to natural selection depends on the genetic variation of the traits under selection and the interaction of these traits with the environment (GxE). However, in the case of diseases, pathogen genotypes add another dimension to this interaction. Therefore, the study of disease resistance needs to be extended to the interaction of host genotype, pathogen genotype and environment (GxGxE). In this study, we used a full-sib breeding design crossing two genetically differentiated populations of the Pacific oyster Crassostrea gigas (Thunberg, 1793), to determine the influence of host genotype, pathogen genotype and temperature on disease resistance. Based on a controlled infection experiment on two early life stages, that is, D-larvae and Pediveliger larvae at elevated and ambient water temperatures, we estimated disease resistance to allopatric and sympatric Vibrio sp. by measuring survival and growth within and between genetically differentiated oyster populations. In both populations, survival was higher upon infection with sympatric Vibrio sp., indicating that disease resistance has a genetic basis and is dependent on host genotype. In addition, we observed a significant GxGxE effect in D-larvae, where contrary to expectations, disease resistance was higher at warm than at cold temperatures. Using thermal reaction norms, we could further show that disease resistance is an environment dependent trait with high plasticity, which indicates the potential for a fast acclimatization to changing environmental conditions. These population-specific reaction norms disappeared in hybrid crosses between both populations which demonstrates that admixture between genetically differentiated populations can influence GxGxE interactions on larger scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...