Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Med ; 28(9): 1831-1839, 2022 09.
Article in English | MEDLINE | ID: mdl-35995953

ABSTRACT

Tumor mutational burden (TMB) is being explored as a predictive biomarker for cancer immunotherapy outcomes in non-small cell lung cancer. BFAST (NCT03178552)-an open-label, global, multicohort trial-evaluated the safety and efficacy of first-line targeted therapies or immunotherapy in patients with unresectable Stage IIIB or IV advanced or metastatic non-small cell lung cancer who were selected for biomarker status using blood-based targeted next-generation sequencing. In the Phase 3 cohort C evaluating blood-based (b)TMB as a biomarker of atezolizumab efficacy, patients with bTMB of ≥10 (N = 471) were randomized 1:1 to receive atezolizumab or platinum-based chemotherapy per local standard of care. Cohort C did not meet its primary endpoint of investigator-assessed progression-free survival in the population with bTMB of ≥16 (hazard ratio, 0.77; 95% confidence interval: 0.59, 1.00; P = 0.053). Adverse events leading to treatment withdrawal occurred in 10% of patients in the atezolizumab arm and 20% in the chemotherapy arm. Adverse events of special interest occurred in 42% of patients in the atezolizumab arm and 26% in the chemotherapy arm. A prespecified exploratory analysis compared the bTMB clinical trial assay with the FoundationOne Liquid Companion Diagnostic assay and showed high concordance between assays. Additional exploration of bTMB to identify optimal cutoffs, confounding factors, assay improvements or cooperative biomarkers is warranted.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics
2.
Nat Med ; 28(5): 939-945, 2022 05.
Article in English | MEDLINE | ID: mdl-35422531

ABSTRACT

Tumor mutational burden (TMB) in circulating tumor DNA (ctDNA) has shown promise in predicting benefit from PD-L1/PD-1 inhibitors in retrospective studies. Aiming to assess blood TMB (bTMB) prospectively, we conducted B-F1RST ( NCT02848651 ), an open-label, phase 2 trial that evaluated bTMB as a predictive biomarker for first-line atezolizumab monotherapy in locally advanced or metastatic stage IIIB-IVB non-small cell lung cancer (n = 152). The co-primary endpoints were investigator-assessed objective response rate (ORR) per RECIST version 1.1 and investigator-assessed progression-free survival (PFS) between high and low bTMB subgroups at the pre-defined bTMB ≥ 16 (14.5 mutations per megabase) cutoff. Secondary endpoints included investigator-assessed PFS, overall survival (OS) and duration of response at various bTMB cutoffs, as well as safety. Investigator-assessed PFS in the bTMB ≥ 16 versus bTMB < 16 groups was not statistically significant. However, bTMB ≥ 16 was associated with higher ORR, and ORR improved as bTMB cutoffs increased. No new safety signals were seen. In exploratory analyses, patients with maximum somatic allele frequency (MSAF) < 1% had higher ORR than patients with MSAF ≥ 1%. However, further analysis showed that this effect was driven by better baseline prognostics rather than by MSAF itself. At 36.5-month follow-up, an exploratory analysis of OS found that bTMB ≥ 16 was associated with longer OS than bTMB < 16. Further study and assay optimization will be required to develop bTMB as a predictive, standalone biomarker of immunotherapy or for use in conjunction with other biomarkers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Antibodies, Monoclonal, Humanized , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/genetics , Humans , Immune Checkpoint Inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation/genetics , Retrospective Studies
4.
Lancet Oncol ; 21(10): 1353-1365, 2020 10.
Article in English | MEDLINE | ID: mdl-32919526

ABSTRACT

BACKGROUND: Tumour mutational burden (TMB) has been retrospectively correlated with response to immune checkpoint blockade. We prospectively explored the association of high tissue TMB (tTMB-high) with outcomes in ten tumour-type-specific cohorts from the phase 2 KEYNOTE-158 study, which assessed the anti-PD-1 monoclonal antibody pembrolizumab in patients with selected, previously treated, advanced solid tumours. METHODS: In the multi-cohort, open-label, non-randomised, phase 2 KEYNOTE-158 study, patients were enrolled from 81 academic facilities and community-based institutions across 21 countries in Africa, the Americas, Asia, and Europe. Eligible patients were aged 18 years or older, had a histologically or cytologically confirmed advanced (ie, unresectable or metastatic, or both) incurable solid tumour (eligible tumour types were anal, biliary, cervical, endometrial, mesothelioma, neuroendocrine, salivary, small-cell lung, thyroid, and vulvar), progression on or intolerance to one or more lines of standard therapy, had measurable disease per Response Evaluation Criteria in Solid Tumors (RECIST; version 1.1) assessed by independent central radiological review, Eastern Cooperative Oncology Group performance status of 0 or 1, life expectancy of at least 3 months, adequate organ function, and a tumour sample for biomarker analysis. Participants were given pembrolizumab 200 mg intravenously every 3 weeks for up to 35 cycles. Tissue TMB (tTMB) was assessed in formalin-fixed paraffin-embedded tumour samples using the FoundationOne CDx assay (Foundation Medicine, Cambridge, MA, USA). The prespecified definition of tTMB-high status was at least 10 mutations per megabase. The primary endpoint was the proportion of patients with an objective response (complete or partial response) as per Response Evaluation Criteria in Solid Tumours (version 1.1) by independent central review. This prespecified analysis assessed the association between antitumour activity and tTMB in treated patients with evaluable tTMB data. Efficacy was assessed in all participants who received at least one dose of pembrolizumab, had evaluable tTMB data, and were enrolled at least 26 weeks before data cutoff (June 27, 2019), and safety was assessed in all participants who received at least one dose of pembrolizumab and had tTMB-high status. KEYNOTE-158 is registered at ClinicalTrials.gov, NCT02628067, and is ongoing. FINDINGS: Between Jan 15, 2016, and June 25, 2019, 1073 patients were enrolled. 1066 participants were treated as of data cutoff (June 27, 2019), of whom 805 (76%) were evaluable for TMB, and 105 (13%) of 805 had tTMB-high status and were assessed for safety. 1050 (98%) of 1066 patients enrolled by at least 26 weeks before data cutoff, of whom 790 (75%) were evaluable for TMB and included in efficacy analyses. 102 (13%) of these 790 patients had tTMB-high status (≥10 mutations per megabase), and 688 (87%) patients had non-tTMB-high status (<10 mutations per megabase). Median study follow-up was 37·1 months (IQR 35·0-38·3). Objective responses were observed in 30 (29%; 95% CI 21-39) of 102 patients in the tTMB-high group and 43 (6%; 5-8) of 688 in the non-tTMB-high group. 11 (10%) of 105 patients had treatment-related serious adverse events. 16 (15%) participants had a grade 3-5 treatment-related adverse event, of which colitis was the only such adverse event that occurred in more than one patient (n=2). One patient had fatal pneumonia that was assessed by the investigator to be treatment related. INTERPRETATION: tTMB-high status identifies a subgroup of patients who could have a robust tumour response to pembrolizumab monotherapy. tTMB could be a novel and useful predictive biomarker for response to pembrolizumab monotherapy in patients with previously treated recurrent or metastatic advanced solid tumours. FUNDING: Merck Sharp & Dohme Corp, a subsidiary of Merck & Co, Inc.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Biomarkers, Tumor/genetics , Neoplasms/therapy , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Biomarkers, Tumor/metabolism , Drug-Related Side Effects and Adverse Reactions , Female , Humans , Immunotherapy , Male , Middle Aged , Mutation , Neoplasms/genetics , Neoplasms/pathology , Prospective Studies , Response Evaluation Criteria in Solid Tumors , Survival Analysis
5.
Am J Manag Care ; 26(5 Spec No.): SP146-SP147, 2020 06.
Article in English | MEDLINE | ID: mdl-32639134

Subject(s)
Precision Medicine , Humans
6.
J Mol Diagn ; 21(6): 1053-1066, 2019 11.
Article in English | MEDLINE | ID: mdl-31445211

ABSTRACT

Microsatellite instability (MSI) is an important biomarker for predicting response to immune checkpoint inhibitor therapy, as emphasized by the recent checkpoint inhibitor approval for MSI-high (MSI-H) solid tumors. Herein, we describe and validate a novel method for determining MSI status from a next-generation sequencing comprehensive genomic profiling assay using formalin-fixed, paraffin-embedded samples. This method is 97% (65/67) concordant with current standards, PCR and immunohistochemistry. We further apply this method to >67,000 patient tumor samples to identify genes and pathways that are enriched in MSI-stable or MSI-H tumor groups. Data show that although rare in tumors other than colorectal and endometrial carcinomas, MSI-H samples are present in many tumor types. Furthermore, the large sample set revealed that MSI-H tumors selectively share alterations in genes across multiple common pathways, including WNT, phosphatidylinositol 3-kinase, and NOTCH. Last, MSI is sufficient, but not necessary, for a tumor to have elevated tumor mutation burden. Therefore, MSI can be determined from comprehensive genomic profiling with high accuracy, allowing for efficient MSI-H detection across all tumor types, especially those in which routine use of immunohistochemistry or PCR-based assays would be impractical because of a rare incidence of MSI. MSI-H tumors are enriched in alterations in specific signaling pathways, providing a rationale for investigating directed immune checkpoint inhibitor therapies in combination with pathway-targeted therapies.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Microsatellite Instability , Neoplasms/genetics , Algorithms , Female , Gene Frequency , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Male , Mutation , Principal Component Analysis
7.
J Gastrointest Oncol ; 9(4): 610-617, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30151257

ABSTRACT

BACKGROUND: The clinical application of PD1/PD-L1 targeting checkpoint inhibitors in colorectal cancer (CRC) has largely focused on a subset of microsatellite instable (MSI-high) patients. However, the proposed genotype that sensitizes these patients to immunotherapy is not captured by MSI status alone. Estimation of tumor mutational burden (TMB) from comprehensive genomic profiling is validated against whole exome sequencing and linked to checkpoint response in metastatic melanoma, urothelial bladder cancer and non-small cell lung carcinoma. We sought to explore the subset of microsatellite stable (MSS) CRC patients with high TMB, and identify the specific genomic signatures associated with this phenotype. Furthermore, we explore the ability to quantify TMB as a potential predictive biomarker of PD1/PD-L1 therapy in CRC. METHODS: Formalin-fixed, paraffin embedded tissue sections from 6,004 cases of CRC were sequenced with a CLIA-approved CGP assay. MSI and TMB statuses were computationally determined using validated methods. The cutoff for TMB-high was defined according to the lower bound value that satisfied the 90% probability interval based on the TMB distribution across all MSI-High patients. RESULTS: MSS tumors were observed in 5,702 of 6,004 (95.0%) cases and MSI-H tumors were observed in 302 (5.0%) cases. All but one (99.7%) MSI-H cases were TMB-high (range, 6.3-746.9 mut/Mb) and 5,538 of 5,702 (97.0%) MSS cases were TMB-low (range, 0.0-10.8 mut/Mb). Consequently, 164 of 5,702 (2.9%) MSS cases were confirmed as TMB-high (range, 11.7-707.2 mut/Mb), representing an increase in the target population that may respond to checkpoint inhibitor therapy by 54% (466 vs. 302, respectively). Response to PD-1 inhibitor is demonstrated in MSS/TMB-high cases. CONCLUSIONS: Concurrent TMB assessment accurately classifies MSI tumors as TMB-high and simultaneously identifies nearly 3% or CRC as MSS/TMB-high. This subgroup may expand the population of CRC who may benefit from immune checkpoint inhibitor based therapeutic approaches.

8.
J Biol Chem ; 280(14): 14122-9, 2005 Apr 08.
Article in English | MEDLINE | ID: mdl-15671031

ABSTRACT

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)beta superfamily of ligands that regulate many crucial aspects of embryonic development and organogenesis. Unlike other TGFbeta ligands, co-receptors for BMP ligands have not been described. Here we show that DRAGON, a glycosylphosphatidylinositol-anchored member of the repulsive guidance molecule family, which is expressed early in the developing nervous system, enhances BMP but not TGFbeta signaling. DRAGON binds directly to BMP2 and BMP4 but not to BMP7 or other TGFbeta ligands. The enhancing action of DRAGON on BMP signaling is also reduced by administration of Noggin, a soluble BMP antagonist, indicating that the action of DRAGON is ligand-dependent. DRAGON associates directly with BMP type I (ALK2, ALK3, and ALK6) and type II (ActRII and ActRIIB) receptors, and its signaling is reduced by dominant negative Smad1 and ALK3 or -6 receptors. In the Xenopus embryo, DRAGON both reduces the threshold of the ability of Smad1 to induce mesodermal and endodermal markers and alters neuronal and neural crest patterning. The direct interaction of DRAGON with BMP ligands and receptors indicates that it is a BMP co-receptor that potentiates BMP signaling.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Signal Transduction/physiology , Animals , Body Patterning , Bone Morphogenetic Protein Receptors , Bone Morphogenetic Proteins/genetics , Carrier Proteins , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/physiology , Embryo, Nonmammalian , Female , Genes, Reporter , Humans , Mice , Morphogenesis/physiology , Nerve Tissue Proteins/genetics , Nervous System/anatomy & histology , Nervous System/embryology , Neural Cell Adhesion Molecules/genetics , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteins/metabolism , Receptors, Growth Factor/genetics , Receptors, Growth Factor/metabolism , Smad Proteins , Smad1 Protein , Trans-Activators/genetics , Trans-Activators/metabolism , Transforming Growth Factor beta/metabolism , Xenopus Proteins , Xenopus laevis/embryology , Xenopus laevis/metabolism
9.
J Biol Chem ; 279(51): 53126-35, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15475360

ABSTRACT

Activins and inhibins compose a heterogeneous subfamily within the transforming growth factor-beta (TGF-beta) superfamily of growth and differentiation factors with critical biological activities in embryos and adults. They signal through a heteromeric complex of type II, type I, and for inhibin, type III receptors. To characterize the affinity, specificity, and activity of these receptors (alone and in combination) for the inhibin/activin subfamily, we developed a cell-free assay system using soluble receptor-Fc fusion proteins. The soluble activin type II receptor (sActRII)-Fc fusion protein had a 7-fold higher affinity for activin A compared with sActRIIB-Fc, whereas both receptors had a marked preference for activin A over activin B. Although inhibin A and B binding was 20-fold lower compared with activin binding to either type II receptor alone, the mixture of either type II receptor with soluble TGF-beta type III receptor (TbetaRIII; betaglycan)-Fc reconstituted a soluble high affinity inhibin receptor. In contrast, mixing either soluble activin type II receptor with soluble activin type I receptors did not substantially enhance activin binding. Our results support a cooperative model of binding for the inhibin receptor (ActRII.sTbetaRIII complex) but not for activin receptors (type II + type I) and demonstrate that a complex composed of activin type II receptors and TbetaRIII is both necessary and sufficient for high affinity inhibin binding. This study also illustrates the utility of this cell-free system for investigating hypotheses of receptor complex mechanisms resulting from crystal structure analyses.


Subject(s)
Activin Receptors/chemistry , Inhibins/chemistry , Cell Line , Cell-Free System , Crystallography, X-Ray , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Glycosylation , Humans , Iodine/chemistry , Kinetics , Ligands , Protein Binding , Protein Structure, Tertiary , Receptors, Fc/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Transforming Growth Factor beta/metabolism
10.
J Neurosci ; 24(8): 2027-36, 2004 Feb 25.
Article in English | MEDLINE | ID: mdl-14985445

ABSTRACT

DRG11, a transcription factor expressed in embryonic dorsal root ganglion (DRG) and dorsal horn neurons, has a role in the development of sensory circuits. We have used a genomic binding strategy to screen for the promoter region of genes regulated by DRG11. One gene with a promoter region binding to the DNA binding domain of DRG11 encodes a novel membrane-associated [glycosyl-phosphatidylinositol (GPI)-anchored] protein that we call DRAGON. DRAGON expression is transcriptionally regulated by DRG11, and it is coexpressed with DRG11 in embryonic DRG and spinal cord. DRAGON expression in these areas is reduced in DRG11 null mutants. DRAGON is expressed, however, in the neural tube before DRG11, and unlike DRG11 it is expressed in the brain and therefore must be regulated by other transcriptional regulatory elements. DRAGON shares high sequence homology with two other GPI-anchored membrane proteins: the mouse ortholog of chick repulsive guidance molecule (mRGM), which is expressed in the mouse nervous system in areas complementary to DRAGON, and DRAGON-like muscle (DL-M), the expression of which is restricted to skeletal and cardiac muscle. A comparative genomic analysis indicates that the family of RGM-related genes--mRGM, DRAGON, and DL-M--are highly conserved among mammals, zebrafish, chick, and Caenorhabditis elegans but not Drosophila. DRAGON, RGM, and DL-M mRNA expression in the zebrafish embryo is similar to that in the mouse. Neuronal cell adhesion assays indicate that DRAGON promotes and mRGM reduces adhesion of mouse DRG neurons. We show that DRAGON interacts with itself homophilically. The dynamic expression, ordered spatial localization, and adhesive properties of the RGM-related family of membrane-associated proteins are compatible with specific roles in development.


Subject(s)
Homeodomain Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , Base Sequence , Brain/embryology , Brain/metabolism , Cell Line , Cloning, Molecular , Conserved Sequence/genetics , GPI-Linked Proteins , Ganglia, Spinal/embryology , Ganglia, Spinal/metabolism , Gene Expression Regulation, Developmental , Glycosylphosphatidylinositols/metabolism , Homeodomain Proteins/genetics , Humans , Membrane Proteins/genetics , Mice , Molecular Sequence Data , Multigene Family/genetics , Muscle Proteins/genetics , Muscle Proteins/metabolism , Nerve Tissue Proteins/biosynthesis , Neural Cell Adhesion Molecules/genetics , Neurons/cytology , Neurons/metabolism , Organ Specificity , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Spinal Cord/embryology , Spinal Cord/metabolism , Transcription Factors/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...