Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(12): 7305-7320, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38842936

ABSTRACT

The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cryoelectron Microscopy , Models, Molecular , Repressor Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Repressor Proteins/genetics , Protein Binding , Protein Multimerization , DNA/chemistry , DNA/metabolism , Binding Sites , Gene Expression Regulation, Bacterial , DNA, Bacterial/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Operon/genetics , Fructosediphosphates
2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396918

ABSTRACT

The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.


Subject(s)
Ixodes , Saliva , Animals , Humans , Saliva/metabolism , Cysteine , Glycosaminoglycans , Cathepsins/metabolism , Ixodes/metabolism , Magnetic Resonance Spectroscopy
3.
Int J Pharm ; 648: 123619, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37979631

ABSTRACT

Antibody-mediated targeting is an efficient strategy to enhance the specificity and selectivity of polymer nanomedicines towards the target site, typically a tumor. However, direct covalent coupling of an antibody with a polymer usually results in a partial damage of the antibody binding site accompanied with a compromised biological activity. Here, an original solution based on well-defined non-covalent interactions between tris-nitrilotriacetic acid (trisNTA) and hexahistidine (His-tag) groups, purposefully introduced to the structure of each macromolecule, is described. Specifically, trisNTA groups were attached along the chains of a hydrophilic statistical copolymer based on N-(2-hydroxypropyl)methacrylamide (HPMA), and at the end or along the chains of thermo-responsive di-block copolymers based on N-isopropylmethacrylamide (NIPMAM) and HPMA; His-tag was incorporated to the structure of a recombinant single chain fragment of an anti-GD2 monoclonal antibody (scFv-GD2). Static and dynamic light scattering analyses confirmed that mixing of polymer with scFv-GD2 led to the formation of polymer/scFv-GD2 complexes; those prepared from thermo-responsive polymers formed stable micelles at 37 °C. Flow cytometry and fluorescence microscopy clearly demonstrated antigen-specific binding of the prepared complexes to GD2 positive murine T-cell lymphoma cells EL-4 and human neuroblastoma cells UKF-NB3, while no interaction with GD2 negative murine fibroblast cells NIH-3T3 was observed. These non-covalent polymer protein complexes represent a new generation of highly specific actively targeted polymer therapeutics or diagnostics.


Subject(s)
Neoplasms , Polymers , Mice , Humans , Animals , Polymers/chemistry , Nitrilotriacetic Acid , Drug Delivery Systems/methods , Recombinant Proteins
4.
Nucleic Acids Res ; 51(18): 10011-10025, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37615563

ABSTRACT

Eukaryotic transcription is dependent on specific histone modifications. Their recognition by chromatin readers triggers complex processes relying on the coordinated association of transcription regulatory factors. Although various modification states of a particular histone residue often lead to differential outcomes, it is not entirely clear how they are discriminated. Moreover, the contribution of intrinsically disordered regions outside of the specialized reader domains to nucleosome binding remains unexplored. Here, we report the structures of a PWWP domain from transcriptional coactivator LEDGF in complex with the H3K36 di- and trimethylated nucleosome, indicating that both methylation marks are recognized by PWWP in a highly conserved manner. We identify a unique secondary interaction site for the PWWP domain at the interface between the acidic patch and nucleosomal DNA that might contribute to an H3K36-methylation independent role of LEDGF. We reveal DNA interacting motifs in the intrinsically disordered region of LEDGF that discriminate between the intra- or extranucleosomal DNA but remain dynamic in the context of dinucleosomes. The interplay between the LEDGF H3K36-methylation reader and protein binding module mediated by multivalent interactions of the intrinsically disordered linker with chromatin might help direct the elongation machinery to the vicinity of RNA polymerase II, thereby facilitating productive elongation.

5.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37134237

ABSTRACT

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Subject(s)
Enzyme Inhibitors , Purine-Nucleoside Phosphorylase , Humans , Purine-Nucleoside Phosphorylase/metabolism , Enzyme Inhibitors/chemistry , Crystallography
6.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1411-1424, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34726169

ABSTRACT

The SorC/DeoR family is a large family of bacterial transcription regulators that are involved in the control of carbohydrate metabolism and quorum sensing. To understand the structural basis of DNA recognition, structural studies of two functionally characterized SorC/DeoR family members from Bacillus subtilis were performed: the deoxyribonucleoside regulator bsDeoR and the central glycolytic genes regulator bsCggR. Each selected protein represents one of the subgroups that are recognized within the family. Crystal structures were determined of the N-terminal DNA-binding domains of bsDeoR and bsCggR in complex with DNA duplexes representing the minimal operator sequence at resolutions of 2.3 and 2.1 Å, respectively. While bsDeoRDBD contains a homeodomain-like HTH-type domain, bsCggRDBD contains a winged helix-turn-helix-type motif. Both proteins form C2-symmetric dimers that recognize two consecutive major grooves, and the protein-DNA interactions have been analyzed in detail. The crystal structures were used to model the interactions of the proteins with the full DNA operators, and a common mode of DNA recognition is proposed that is most likely to be shared by other members of the SorC/DeoR family.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Bacillus subtilis/chemistry , Bacterial Proteins/chemistry , Binding Sites , Crystallography, X-Ray , DNA/metabolism , DNA-Binding Proteins/chemistry , Models, Molecular , Protein Binding , Protein Conformation
7.
Biomedicines ; 9(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34829829

ABSTRACT

Targeted cancer immunotherapy is a promising tool for restoring immune surveillance and eradicating cancer cells. Hydrophilic polymers modified with coiled coil peptide tags can be used as universal carriers designed for cell-specific delivery of such biologically active proteins. Here, we describe the preparation of pHPMA-based copolymer conjugated with immunologically active protein B7-H6 via complementary coiled coil VAALEKE (peptide E) and VAALKEK (peptide K) sequences. Receptor B7-H6 was described as a binding partner of NKp30, and its expression has been proven for various tumor cell lines. The binding of B7-H6 to NKp30 activates NK cells and results in Fas ligand or granzyme-mediated apoptosis of target tumor cells. In this work, we optimized the expression of coiled coil tagged B7-H6, its ability to bind activating receptor NKp30 has been confirmed by isothermal titration calorimetry, and the binding stoichiometry of prepared chimeric biopolymer has been characterized by analytical ultracentrifugation. Furthermore, this coiled coil B7-H6-loaded polymer conjugate activates NK cells in vitro and, in combination with coiled coil scFv, enables their targeting towards a model tumor cell line. Prepared chimeric biopolymer represents a promising precursor for targeted cancer immunotherapy by activating the cytotoxic activity of natural killer cells.

8.
Science ; 374(6571): 1113-1121, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34822292

ABSTRACT

During eukaryotic transcription elongation, RNA polymerase II (RNAP2) is regulated by a chorus of factors. Here, we identified a common binary interaction module consisting of TFIIS N-terminal domains (TNDs) and natively unstructured TND-interacting motifs (TIMs). This module was conserved among the elongation machinery and linked complexes including transcription factor TFIIS, Mediator, super elongation complex, elongin, IWS1, SPT6, PP1-PNUTS phosphatase, H3K36me3 readers, and other factors. Using nuclear magnetic resonance, live-cell microscopy, and mass spectrometry, we revealed the structural basis for these interactions and found that TND-TIM sequences were necessary and sufficient to induce strong and specific colocalization in the crowded nuclear environment. Disruption of a single TIM in IWS1 induced robust changes in gene expression and RNAP2 elongation dynamics, which underscores the functional importance of TND-TIM surfaces for transcription elongation.


Subject(s)
Intrinsically Disordered Proteins/chemistry , RNA Polymerase II/metabolism , RNA-Binding Proteins/chemistry , Transcription Elongation, Genetic , Transcription Factors/chemistry , Transcriptional Elongation Factors/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Gene Expression , Humans , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs/genetics , Protein Interaction Maps , RNA Polymerase II/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Elongation Factors/metabolism
9.
Chembiochem ; 22(18): 2741-2761, 2021 09 14.
Article in English | MEDLINE | ID: mdl-33939874

ABSTRACT

This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).


Subject(s)
Boron Compounds/chemistry , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Binding Sites , Boron Compounds/metabolism , Boron Compounds/therapeutic use , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrase Inhibitors/therapeutic use , Humans , Molecular Dynamics Simulation , Neoplasms/drug therapy , Organometallic Compounds/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry
10.
Sci Rep ; 11(1): 5239, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664400

ABSTRACT

While DNA encodes protein structure, glycans provide a complementary layer of information to protein function. As a prime example of the significance of glycans, the ability of the cell surface receptor CD44 to bind its ligand, hyaluronan, is modulated by N-glycosylation. However, the details of this modulation remain unclear. Based on atomistic simulations and NMR, we provide evidence that CD44 has multiple distinct binding sites for hyaluronan, and that N-glycosylation modulates their respective roles. We find that non-glycosylated CD44 favors the canonical sub-micromolar binding site, while glycosylated CD44 binds hyaluronan with an entirely different micromolar binding site. Our findings show (for the first time) how glycosylation can alter receptor affinity by shielding specific regions of the host protein, thereby promoting weaker binding modes. The mechanism revealed in this work emphasizes the importance of glycosylation in protein function and poses a challenge for protein structure determination where glycosylation is usually neglected.


Subject(s)
Hyaluronan Receptors/genetics , Hyaluronic Acid/genetics , Polysaccharides/genetics , Protein Conformation , Binding Sites/genetics , Cell Adhesion/genetics , Glycosylation , Humans , Hyaluronan Receptors/ultrastructure , Magnetic Resonance Spectroscopy , Protein Binding/genetics , Receptors, Cell Surface/genetics
11.
Chempluschem ; 86(3): 351, 2021 03.
Article in English | MEDLINE | ID: mdl-33369232

ABSTRACT

Invited for this month's cover is a collaboration from three institutes from the Czech Academy of Sciences: Institute of Inorganic Chemistry, Institute of Organic Chemistry and Biochemistry, and Institute of Molecular Genetics, and the University of Pardubice. The cover picture shows a family of potent and selective CA IX inhibitors that combines the structural motif of a bulky inorganic cobalt bis(dicarbollide) polyhedral ion with a propylsulfonamido anchor group. Read the full text of the article at 10.1002/cplu.202000574.


Subject(s)
Carbonic Anhydrase Inhibitors , Neoplasms , Carbonic Anhydrase IX , Cobalt , Humans
12.
Chempluschem ; 86(3): 352-363, 2021 03.
Article in English | MEDLINE | ID: mdl-32955786

ABSTRACT

Carbonic anhydrase IX (CAIX) is an enzyme expressed on the surface of cells in hypoxic tumors. It plays a role in regulation of tumor pH and promotes thus tumor cell survival and occurrence of metastases. Here, derivatives of the cobalt bis(dicarbollide)(1-) anion are reported that are based on substitution at the carbon sites of the polyhedra by two alkylsulfonamide groups differing in the length of the aliphatic connector (from C1 to C4, n=1-4), which were prepared by cobalt insertion into the 7-sulfonamidoalkyl-7,8-dicarba-nido-undecaborate ions. Pure meso- and rac-diastereoisomeric forms were isolated. The series is complemented with monosubstituted species (n=2). Synthesis by a direct method furnished similar derivatives (n=2, 3), which are chlorinated at the B(8,8') boron sites. All compounds inhibited CAIX with subnanomolar inhibition constants and showed high selectivity for CAIX. The best inhibitory properties were observed for the compound with n= 3 and two substituents present in rac-arrangement with Ki =20 pM and a selectivity index of 668. X-ray crystallography was used to study interactions of these compounds with the active site of CAIX on the structural level.


Subject(s)
Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Cobalt/chemistry , Coordination Complexes/chemistry , Sulfonamides/chemistry , Binding Sites , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrase Inhibitors/therapeutic use , Catalytic Domain , Coordination Complexes/metabolism , Coordination Complexes/therapeutic use , Crystallography, X-Ray , Humans , Molecular Conformation , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/pathology
13.
J Enzyme Inhib Med Chem ; 35(1): 1800-1810, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32962427

ABSTRACT

Human carbonic anhydrase IX (CA IX), a protein specifically expressed on the surface of solid tumour cells, represents a validated target both for anticancer therapy and diagnostics. We recently identified sulfonamide dicarbaboranes as promising inhibitors of CA IX with favourable activities both in vitro and in vivo. To explain their selectivity and potency, we performed detailed X-ray structural analysis of their interactions within the active sites of CA IX and CA II. Series of compounds bearing various aliphatic linkers between the dicarbaborane cluster and sulfonamide group were examined. Preferential binding towards the hydrophobic part of the active site cavity was observed. Selectivity towards CA IX lies in the shape complementarity of the dicarbaborane cluster with a specific CA IX hydrophobic patch containing V131 residue. The bulky side chain of F131 residue in CA II alters the shape of the catalytic cavity, disrupting favourable interactions of the spherical dicarbaborane cluster.


Subject(s)
Antineoplastic Agents/chemistry , Boron Compounds/chemistry , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Sulfonamides/chemistry , Amino Acid Sequence , Antigens, Neoplasm/genetics , Antineoplastic Agents/pharmacology , Carbonic Anhydrase IX/genetics , Carbonic Anhydrase Inhibitors/pharmacology , Catalytic Domain , Crystallography, X-Ray , Drug Screening Assays, Antitumor , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Protein Binding , Structure-Activity Relationship , Sulfonamides/pharmacology
14.
Structure ; 28(12): 1288-1299.e7, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32946742

ABSTRACT

Dimerization of many eukaryotic transcription regulatory factors is critical for their function. Regulatory role of an epigenetic reader lens epithelium-derived growth factor/p75 (LEDGF/p75) requires at least two copies of this protein to overcome the nucleosome-induced barrier to transcription elongation. Moreover, various LEDGF/p75 binding partners are enriched for dimeric features, further underscoring the functional regulatory role of LEDGF/p75 dimerization. Here, we dissected the minimal dimerization region in the C-terminal part of LEDGF/p75 and, using paramagnetic NMR spectroscopy, identified the key molecular contacts that helped to refine the solution structure of the dimer. The LEDGF/p75 dimeric assembly is stabilized by domain swapping within the integrase binding domain and additional electrostatic "stapling" of the negatively charged α helix formed in the intrinsically disordered C-terminal region. We validated the dimerization mechanism using structure-inspired dimerization defective LEDGF/p75 variants and chemical crosslinking coupled to mass spectrometry. We also show how dimerization might affect the LEDGF/p75 interactome.


Subject(s)
Intercellular Signaling Peptides and Proteins/chemistry , Protein Multimerization , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Protein Domains , Static Electricity
15.
Eur J Med Chem ; 200: 112460, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32505851

ABSTRACT

Carbonic anhydrase IX (CA IX) is a transmembrane enzyme overexpressed in hypoxic tumors, where it plays an important role in tumor progression. Specific CA IX inhibitors potentially could serve as anti-cancer drugs. We designed a series of sulfonamide inhibitors containing carborane clusters based on prior structural knowledge of carborane binding into the enzyme active site. Two types of carborane clusters, 12-vertex dicarba-closo-dodecaborane and 11-vertex 7,8-dicarba-nido-undecaborate (dicarbollide), were connected to a sulfonamide moiety via aliphatic linkers of varying lengths (1-4 carbon atoms; n = 1-4). In vitro testing of CA inhibitory potencies revealed that the optimal linker length for selective inhibition of CA IX was n = 3. A 1-sulfamidopropyl-1,2-dicarba-closo-dodecaborane (3) emerged as the strongest CA IX inhibitor from this series, with a Ki value of 0.5 nM and roughly 1230-fold selectivity towards CA IX over CA II. X-ray studies of 3 yielded structural insights into their binding modes within the CA IX active site. Compound 3 exhibited moderate cytotoxicity against cancer cell lines and primary cell lines in 2D cultures. Cytotoxicity towards multicellular spheroids was also observed. Moreover, 3 significantly lowered the amount of CA IX on the cell surface both in 2D cultures and spheroids and facilitated penetration of doxorubicin. Although 3 had only a moderate effect on tumor size in mice, we observed favorable ADME properties and pharmacokinetics in mice, and preferential presence in brain over serum.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Sulfonamides/pharmacology , Animals , Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Mice, Inbred BALB C , Mice, SCID , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Recombinant Proteins/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
16.
J Med Chem ; 62(21): 9560-9575, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31568723

ABSTRACT

Carbonic anhydrase IX (CAIX) is a transmembrane enzyme that regulates pH in hypoxic tumors and promotes tumor cell survival. Its expression is associated with the occurrence of metastases and poor prognosis. Here, we present nine derivatives of the cobalt bis(dicarbollide)(1-) anion substituted at the boron or carbon sites by alkysulfamide group(s) as highly specific and selective inhibitors of CAIX. Interactions of these compounds with the active site of CAIX were explored on the atomic level using protein crystallography. Two selected derivatives display subnanomolar or picomolar inhibition constants and high selectivity for the tumor-specific CAIX over cytosolic isoform CAII. Both derivatives had a time-dependent effect on the growth of multicellular spheroids of HT-29 and HCT116 colorectal cancer cells, facilitated penetration and/or accumulation of doxorubicin into spheroids, and displayed low toxicity and showed promising pharmacokinetics and a significant inhibitory effect on tumor growth in syngenic breast 4T1 and colorectal HT-29 cancer xenotransplants.


Subject(s)
Amides/chemistry , Boranes/chemistry , Boranes/pharmacology , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Animals , Biological Transport/drug effects , Carbonic Anhydrase IX/chemistry , Catalytic Domain , Cell Line, Tumor , Doxorubicin/metabolism , Drug Design , Drug Synergism , Humans , Mice , Models, Molecular , Xenograft Model Antitumor Assays
17.
J Biol Chem ; 294(46): 17371-17382, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31558604

ABSTRACT

Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58-IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.


Subject(s)
Insulin-Like Growth Factor I/chemistry , Insulin/chemistry , Receptor, IGF Type 1/chemistry , Receptor, Insulin/chemistry , Abnormalities, Multiple/genetics , Amino Acid Sequence/genetics , Binding Sites/genetics , Growth Disorders/genetics , Humans , Insulin/analogs & derivatives , Insulin/chemical synthesis , Insulin/genetics , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor II/chemistry , Insulin-Like Growth Factor II/genetics , Mutation/genetics , Nuclear Magnetic Resonance, Biomolecular , Protein Binding/genetics , Protein Domains/genetics , Receptor, IGF Type 1/genetics , Receptor, Insulin/genetics
18.
Biochim Biophys Acta Proteins Proteom ; 1867(4): 376-381, 2019 04.
Article in English | MEDLINE | ID: mdl-30639426

ABSTRACT

Germline mutations in NUDT15 cause thiopurine intolerance during treatment of leukemia or autoimmune diseases. Previously, it has been shown that the mutations affect the enzymatic activity of the NUDT15 hydrolase due to decreased protein stability in vivo. Here we provide structural insights into protein destabilization in R139C and V18I mutants using thermolysin-based proteolysis and H/D exchange followed by mass spectrometry. Both mutants exhibited destabilization of the catalytic site, which was more pronounced at higher temperature. This structural perturbation is shared by the mutations despite their different positions within the protein structure. Reaction products of NUDT15 reverted these conformational abnormalities, demonstrating the importance of ligands for stabilization of a native state of the mutants. This study shows the action of pharmacogenetic variants in NUDT15 in a context of protein structure, which might open novel directions in personalized chemotherapy.


Subject(s)
Deoxyguanine Nucleotides/chemistry , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Catalytic Domain , Mutagenesis, Site-Directed , Mutation , Protein Stability , Temperature , Thermolysin/chemistry
19.
Biomacromolecules ; 20(1): 412-421, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30485077

ABSTRACT

A water-soluble polymer cancerostatic actively targeted against cancer cells expressing a disialoganglioside antigen GD2 was designed, synthesized and characterized. A polymer conjugate of an antitumor drug doxorubicin with a N-(2-hydroxypropyl)methacrylamide-based copolymer was specifically targeted against GD2 antigen-positive tumor cells using a recombinant single chain fragment (scFv) of an anti-GD2 monoclonal antibody. The targeting protein ligand was attached to the polymer-drug conjugate either via a covalent bond between the amino groups of the protein using a traditional nonspecific aminolytic reaction with a reactive polymer precursor or via a noncovalent but highly specific interaction between bungarotoxin covalently linked to the polymer and the recombinant scFv modified with a C-terminal bungarotoxin-binding peptide. The GD2 antigen binding activity and GD2-specific cytotoxicity of the targeted noncovalent polymer-scFv complex proved to be superior to the covalent polymer-scFv conjugate.


Subject(s)
Antineoplastic Agents/chemistry , Gangliosides/immunology , Nanoconjugates/chemistry , Single-Chain Antibodies/chemistry , 3T3 Cells , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Bungarotoxins/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Mice , Polymethacrylic Acids/chemistry , Protein Binding , Single-Chain Antibodies/immunology
20.
Proc Natl Acad Sci U S A ; 115(30): E7053-E7062, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29997176

ABSTRACT

Lens epithelium-derived growth factor/p75 (LEDGF/p75, or PSIP1) is a transcriptional coactivator that tethers other proteins to gene bodies. The chromatin tethering function of LEDGF/p75 is hijacked by HIV integrase to ensure viral integration at sites of active transcription. LEDGF/p75 is also important for the development of mixed-lineage leukemia (MLL), where it tethers the MLL1 fusion complex at aberrant MLL targets, inducing malignant transformation. However, little is known about how the LEDGF/p75 protein interaction network is regulated. Here, we obtained solution structures of the complete interfaces between the LEDGF/p75 integrase binding domain (IBD) and its cellular binding partners and validated another binding partner, Mediator subunit 1 (MED1). We reveal that structurally conserved IBD-binding motifs (IBMs) on known LEDGF/p75 binding partners can be regulated by phosphorylation, permitting switching between low- and high-affinity states. Finally, we show that elimination of IBM phosphorylation sites on MLL1 disrupts the oncogenic potential of primary MLL1-rearranged leukemic cells. Our results demonstrate that kinase-dependent phosphorylation of MLL1 represents a previously unknown oncogenic dependency that may be harnessed in the treatment of MLL-rearranged leukemia.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , Cell Line, Tumor , HIV/enzymology , HIV/genetics , HIV Integrase/genetics , HIV Integrase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mediator Complex Subunit 1/genetics , Mediator Complex Subunit 1/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Phosphorylation/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...