Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 648: 123616, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37977291

ABSTRACT

High concentration formulations have become an important pre-requisite in the development of biological drugs, particularly in the case of subcutaneous administration where limited injection volume negatively affects the administered dose. In this study, we propose to develop high concentration formulations of biologics using a reversible protein-polyelectrolyte complex (RPC) approach. First, the versatility of RPC was assessed using different complexing agents and formats of therapeutic proteins, to define the optimal conditions for complexation and dissociation of the complex. The stability of the protein was investigated before and after complexation, as well as upon a 4-week storage period at various temperatures. Subsequently, two approaches were selected to develop high concentration RPC formulations: first, using up-concentrated RPC suspensions in aqueous buffers, and second, by generating spray-dried RPC and further resuspension in non-aqueous solvents. Results showed that the RPC concept is applicable to a wide range of therapeutic protein formats and the complexation-dissociation process did not affect the stability of the proteins. High concentration formulations up to 200 mg/mL could be achieved by up-concentrating RPC suspensions in aqueous buffers and RPC suspensions in non-aqueous solvents were concentrated up to 250 mg/mL. Although optimization is needed, our data suggests that RPC may be a promising avenue to achieve high concentration formulations of biologics for subcutaneous administration.


Subject(s)
Biological Products , Drug Compounding , Proteins , Excipients , Solvents
2.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261080

ABSTRACT

The large-scale production of plastic and the resulting release of waste is leading to a huge accumulation of micro-sized particles in the environment that could have an impact on not only aquatic organisms but also on humans. Despite the extensive literature on the subject, there is still an insufficient harmonization of methodologies for the collection and analysis of microplastics (MPs) in complex matrices; especially for high density polymers; such as polyvinyl chloride (PVC), which tend to sink and accumulate in sediments, becoming available to benthonic organisms. In this article, mussels have been chosen as model for microplastic accumulation due to their extensive filtering activity and their wide distribution in both fresh and salt water basins. To facilitate the identification and quantification of microplastics taken up by mussels, novel fluorescent and metal-doped PVC microplastics (PVC-Platinum octaethylporphyrin (PtOEP) MPs in the size range of 100 µm) have been synthesized and characterized. For the analysis of the mussels following exposure, an enzymatic protocol using amylase, lipase, papain, and SDS for organic material digestion and a sucrose-ZnCl2 density gradient for the selective separation of ingested microplastics has been developed. The final identification of MPs was performed by fluorescence microscopy. This work can greatly benefit the scientific community by providing a means to study the behavior of PVC MPs, which represent an example of a very relevant yet poorly studied high density polymeric contaminant commonly found in complex environmental matrices.

SELECTION OF CITATIONS
SEARCH DETAIL
...