Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol In Vitro ; 28(5): 1046-65, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24637247

ABSTRACT

Both a prospective and a retrospective validation study were undertaken to assess the suitability of the Ocular Irritection assay to discriminate ocular hazards as defined by the OECD and UN Globally Harmonized System (UN GHS) for classification. The primary focus of the study was to evaluate the usefulness of the Ocular Irritection assay to reliably discriminate chemicals not requiring classification (UN GHS non-classified), from classified chemicals (UN GHS Categories 1 and 2). Furthermore a post-hoc evaluation was carried out to evaluate the usefulness of the assay to discriminate chemicals inducing serious eye damage (UN GHS Category 1) from other classes. The prospective validation study was conducted between 2009 and 2012 following internationally agreed principles. A set of 56 coded test chemicals for which quality and/or peer-reviewed in vivo data were available were used to obtain prospective data on the assay's reliability (reproducibility within and between laboratories) and relevance (predictive capacity). The assay showed good within-laboratory variability, transferability including to a naïve laboratory, and between-laboratory concordance of classifications (82% for the discrimination of non-classified from classified chemicals, and 83% for the discrimination of Category 1 from other classes). The obtained prospective data were then combined with existing data on the Ocular Irritection collected from various sources, totaling 88 chemicals with parallel in vivo and in vitro data to obtain a comprehensive assessment of the test method performances. The enlarged dataset comprised 43 non-classified, 25 Category 2 and 20 Category 1 chemicals according to the UN GHS classification. When used for the identification of UN GHS non-classified versus classified materials (based on the existing cut-off of 12.5) the Ocular Irritection assay showed an overall a sensitivity of 93% and a specificity of 58%. An evaluation on possible reasons for misclassification identified some organic functional groups (acrylate, carboxamide and cycloalkene) to correlate with the observed mispredictions. If these functional groups were excluded from the Ocular Irritection applicability domain, the obtained dataset (n=79 chemicals distributed as 41 UN GHS Classified and 38 Non-Classified chemicals) had an overall sensitivity of 98%, and specificity of 63%, which is in line with currently adopted test methods. When used for the identification of UN GHS Category 1 versus other categories (based on the existing cut-off of 30.0) the Ocular Irritection assay showed an overall specificity of 81% and a sensitivity of 50% which is again in line with currently adopted test methods. The Ocular Irritection assay appeared therefore as a useful test method to predict chemicals not requiring classification for eye hazards according to the UN GHS classification system. Furthermore the method was found suitable to identify serious/irreversible eye damage (UN GHS Category 1). The detailed documentation and results of the study have been submitted to an internationally recognized validation centre for peer-review.


Subject(s)
Biological Assay , Eye/drug effects , Irritants/toxicity , Toxicity Tests, Acute/methods , Animal Testing Alternatives , Cornea , Eye Proteins/metabolism , Irritants/classification , Models, Biological , Protein Denaturation , Reproducibility of Results
2.
Regul Toxicol Pharmacol ; 62(2): 393-403, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22085589

ABSTRACT

Validated in vitro methods for skin corrosion and irritation were adopted by the OECD and by the European Union during the last decade. In the EU, Switzerland and countries adopting the EU legislation, these assays may allow the full replacement of animal testing for identifying and classifying compounds as skin corrosives, skin irritants, and non irritants. In order to develop harmonised recommendations on the use of in vitro data for regulatory assessment purposes within the European framework, a workshop was organized by the Swiss Federal Office of Public Health together with ECVAM and the BfR. It comprised stakeholders from various European countries involved in the process from in vitro testing to the regulatory assessment of in vitro data. Discussions addressed the following questions: (1) the information requirements considered useful for regulatory assessment; (2) the applicability of in vitro skin corrosion data to assign the corrosive subcategories as implemented by the EU Classification, Labelling and Packaging Regulation; (3) the applicability of testing strategies for determining skin corrosion and irritation hazards; and (4) the applicability of the adopted in vitro assays to test mixtures, preparations and dilutions. Overall, a number of agreements and recommendations were achieved in order to clarify and facilitate the assessment and use of in vitro data from regulatory accepted methods, and ultimately help regulators and scientists facing with the new in vitro approaches to evaluate skin irritation and corrosion hazards and risks without animal data.


Subject(s)
Caustics/toxicity , Irritants/toxicity , Risk Assessment/legislation & jurisprudence , Skin/drug effects , Animal Testing Alternatives , Animals , European Union , Female , Male , Switzerland
3.
Toxicol In Vitro ; 24(1): 1-9, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19490935

ABSTRACT

In spite of over 20 years of effort, no single in vitro assay has been developed and validated as a full regulatory replacement for the Draize Eye Irritation test. However, companies have been using in vitro methods to screen new formulations and in some cases as their primary assessment of eye irritation potential for many years. The present report shows the outcome of an Expert Meeting convened by the European Centre for the Validation of Alternative Methods in February 2005 to identify test strategies for eye irritation. In this workshop test developers/users were requested to nominate methods to be considered as a basis for the identification of such testing strategies. Assays were evaluated and categorized based on their proposed applicability domains (e.g., categories of irritation severity, modes of action, chemical class, physicochemical compatibility). The analyses were based on the data developed from current practice and published studies, the ability to predict depth of injury (within the applicable range of severity), modes of action that could be addressed and compatibility with different physiochemical forms. The difficulty in predicting the middle category of irritancy (e.g. R36, GHS Categories 2A and 2B) was recognized. The testing scheme proposes using a Bottom-Up (begin with using test methods that can accurately identify non-irritants) or Top-Down (begin with using test methods that can accurately identify severe irritants) progression of in vitro tests (based on expected irritancy). Irrespective of the starting point, the approach would identify non-irritants and severe irritants, leaving all others to the (mild/moderate) irritant GHS 2/R36 categories.


Subject(s)
Animal Testing Alternatives , Eye Diseases/chemically induced , Irritants/toxicity , Toxicology/methods , Animals , Cattle , Chickens , Epithelium, Corneal/pathology , European Union , Eye/pathology , Eye Diseases/pathology , Humans , In Vitro Techniques , Legislation, Drug , Rabbits , Reproducibility of Results , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...