Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 192(1): 582-600, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36537119

ABSTRACT

Thermomorphogenesis is, among other traits, characterized by enhanced hypocotyl elongation due to the induction of auxin biosynthesis genes like YUCCA8 by transcription factors, most notably PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Efficient binding of PIF4 to the YUCCA8 locus under warmth depends on HISTONE DEACETYLASE 9 (HDA9) activity, which mediates histone H2A.Z depletion at the YUCCA8 locus. However, HDA9 lacks intrinsic DNA-binding capacity, and how HDA9 is recruited to YUCCA8, and possibly other PIF4-target sites, is currently not well understood. The Mediator complex functions as a bridge between transcription factors bound to specific promoter sequences and the basal transcription machinery containing RNA polymerase II. Mutants of Mediator component Mediator25 (MED25) exhibit reduced hypocotyl elongation and reduced expression of YUCCA8 at 27°C. In line with a proposed role for MED25 in thermomorphogenesis in Arabidopsis (Arabidopsis thaliana), we demonstrated an enhanced association of MED25 to the YUCCA8 locus under warmth and interaction of MED25 with both PIF4 and HDA9. Genetic analysis confirmed that MED25 and HDA9 operate in the same pathway. Intriguingly, we also showed that MED25 destabilizes HDA9 protein. Based on our findings, we propose that MED25 recruits HDA9 to the YUCCA8 locus by binding to both PIF4 and HDA9.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mediator Complex/genetics , Mediator Complex/metabolism , Phytochrome/metabolism , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Gene Expression Regulation, Plant , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
2.
Plants (Basel) ; 11(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36015381

ABSTRACT

Taraxacum kok-saghyz (Tks), also known as the Russian dandelion, is a recognized alternative source of natural rubber quite comparable, for quality and use, to the one obtained from the so-called rubber tree, Hevea brasiliensis. In addition to that, Tks roots produce several other compounds, including inulin, whose use in pharmaceutical and dietary products is quite extensive. Histone-modifying genes (HMGs) catalyze a series of post-translational modifications that affect chromatin organization and conformation, which, in turn, regulate many downstream processes, including gene expression. In this study, we present the first analysis of HMGs in Tks. Altogether, we identified 154 putative Tks homologs: 60 HMTs, 34 HDMs, 42 HATs, and 18 HDACs. Interestingly, whilst most of the classes showed similar numbers in other plant species, including M. truncatula and A. thaliana, HATs and HMT-PRMTs were indeed more abundant in Tks. Composition and structure analysis of Tks HMG proteins showed, for some classes, the presence of novel domains, suggesting a divergence from the canonical HMG model. The analysis of publicly available transcriptome datasets, combined with spatial expression of different developmental tissues, allowed us to identify several HMGs with a putative role in metabolite biosynthesis. Overall, our work describes HMG genomic organization and sets the premises for the functional characterization of epigenetic modifications in rubber-producing plants.

4.
Genes (Basel) ; 12(5)2021 04 29.
Article in English | MEDLINE | ID: mdl-33946956

ABSTRACT

Cryptochromes are flavin-containing blue light photoreceptors, present in most kingdoms, including archaea, bacteria, plants, animals and fungi. They are structurally similar to photolyases, a class of flavoproteins involved in light-dependent repair of UV-damaged DNA. Cryptochromes were first discovered in Arabidopsis thaliana in which they control many light-regulated physiological processes like seed germination, de-etiolation, photoperiodic control of the flowering time, cotyledon opening and expansion, anthocyanin accumulation, chloroplast development and root growth. They also regulate the entrainment of plant circadian clock to the phase of light-dark daily cycles. Here, we review the molecular mechanisms by which plant cryptochromes control the synchronisation of the clock with the environmental light. Furthermore, we summarise the circadian clock-mediated changes in cell cycle regulation and chromatin organisation and, finally, we discuss a putative role for plant cryptochromes in the epigenetic regulation of genes.


Subject(s)
Circadian Clocks , Cryptochromes/metabolism , Plant Proteins/metabolism , Cryptochromes/genetics , Epigenesis, Genetic , Plant Proteins/genetics , Plants/genetics , Plants/metabolism
5.
Physiol Plant ; 169(3): 336-346, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32175597

ABSTRACT

Light is a pivotal environmental element capable of influencing multiple physiological processes across the entire plant life cycle. Over the course of their evolution, plants have developed several families of photoreceptors such as phytochromes, phototropins, ultraviolet (UV) resistance locus 8 and cryptochromes (crys), in order to sense light stimuli and respond to their changes. Numerous genetic studies have demonstrated that functional alterations to these photoreceptors cause a change in important agronomical traits. In particular, crys, which absorb UVA/blue light, can influence seed germination, flowering induction, plant architecture, fruit metabolic content and resistance to biotic and abiotic stresses. In the years to come, the rising temperatures and alterations to precipitation patterns generated by climate change will present a dramatic challenge for our agricultural system, with its few varieties characterized by a narrow genetic pool derived from artificial selection. Here, we review the main roles of crys in determining important agronomic traits in crops, we discuss the opportunities of using these photoreceptors as genetic targets for tuning plant physiological responses to environmental change, and the molecular strategies used so far to manipulate this family of photoreceptors.


Subject(s)
Cryptochromes , Phytochrome , Light , Plants
6.
Plant Physiol ; 179(2): 732-748, 2019 02.
Article in English | MEDLINE | ID: mdl-30541876

ABSTRACT

Cryptochromes are flavin-containing blue/UVA light photoreceptors that regulate various plant light-induced physiological processes. In Arabidopsis (Arabidopsis thaliana), cryptochromes mediate de-etiolation, photoperiodic control of flowering, entrainment of the circadian clock, cotyledon opening and expansion, anthocyanin accumulation, and root growth. In tomato (Solanum lycopersicum), cryptochromes are encoded by a multigene family, comprising CRY1a, CRY1b, CRY2, and CRY3 We have previously reported the phenotypes of tomato cry1a mutants and CRY2 overexpressing plants. Here, we report the isolation by targeting induced local lesions in genomes, of a tomato cry2 knock-out mutant, its introgression in the indeterminate Moneymaker background, and the phenotypes of cry1a/cry2 single and double mutants. The cry1a/cry2 mutant showed phenotypes similar to its Arabidopsis counterpart (long hypocotyls in white and blue light), but also several additional features such as increased seed weight and internode length, enhanced hypocotyl length in red light, inhibited primary root growth under different light conditions, anticipation of flowering under long-day conditions, and alteration of the phase of circadian leaf movements. Both cry1a and cry2 control the levels of photosynthetic pigments in leaves, but cry2 has a predominant role in fruit pigmentation. Metabolites of the sterol, tocopherol, quinone, and sugar classes are differentially accumulated in cry1a and cry2 leaves and fruits. These results demonstrate a pivotal role of cryptochromes in controlling tomato development and physiology. The manipulation of these photoreceptors represents a powerful tool to influence important agronomic traits such as flowering time and fruit quality.


Subject(s)
Cryptochromes/metabolism , Solanum lycopersicum/physiology , Circadian Rhythm/physiology , Cryptochromes/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Metabolome/genetics , Mutation , Seedlings/genetics , Seedlings/growth & development , Seeds/genetics , Seeds/growth & development
7.
BMC Genomics ; 19(1): 875, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30514210

ABSTRACT

BACKGROUND: Taraxacum kok-saghyz R. (Tks) is a promising alternative species to Hevea brasiliensis for production of high quality natural rubber (NR). A comparative transcriptome analysis of plants with differential production of NR will contribute to elucidate which genes are involved in the synthesis, regulation and accumulation of this natural polymer and could help to develop Tks into a rubber crop. RESULTS: We measured rubber content in the latex of 90 individual Tks plants from 9 accessions, observing a high degree of variability. We carried out de novo root transcriptome sequencing, assembly, annotation and comparison of gene expression of plants with the lower (LR plants) and the higher rubber content (HR plants). The transcriptome analysis also included one plant that did not expel latex, in principle depleted of latex transcripts. Moreover, the transcription of some genes well known to play a major role in rubber biosynthesis, was probed by qRT-PCR. Our analysis showed a high modulation of genes involved in the synthesis of NR between LR and HR plants, and evidenced that genes involved in sesquiterpenoids, monoterpenoids and phenylpropanoid biosynthesis are upregulated in LR plants. CONCLUSIONS: Our results show that a higher amount of rubber in the latex in HR plants is positively correlated with high expression levels of a number of genes directly involved in rubber synthesis showing that NR production is highly controlled at transcriptional level. On the other hand, lower amounts of rubber in LR plants is related with higher expression of genes involved in the synthesis of other secondary metabolites that, we hypothesize, may compete towards NR biosynthesis. This dataset represents a fundamental genomic resource for the study of Tks and the comprehension of the synthesis of NR and other biochemically and pharmacologically relevant compounds in the Taraxacum genus.


Subject(s)
Gene Expression Regulation, Plant , Rubber/metabolism , Taraxacum/genetics , Contig Mapping , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant/chemistry , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Rubber/analysis , Sequence Analysis, RNA
8.
PLoS One ; 12(8): e0183050, 2017.
Article in English | MEDLINE | ID: mdl-28797083

ABSTRACT

The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the most devastating pest of cultivated olive (Olea europaea L.). Intraspecific variation in plant resistance to B. oleae has been described only at phenotypic level. In this work, we used a transcriptomic approach to study the molecular response to the olive fruit fly in two olive cultivars with contrasting level of susceptibility. Using next-generation pyrosequencing, we first generated a catalogue of more than 80,000 sequences expressed in drupes from approximately 700k reads. The assembled sequences were used to develop a microarray layout with over 60,000 olive-specific probes. The differential gene expression analysis between infested (i.e. with II or III instar larvae) and control drupes indicated a significant intraspecific variation between the more tolerant and susceptible cultivar. Around 2500 genes were differentially regulated in infested drupes of the tolerant variety. The GO annotation of the differentially expressed genes implies that the inducible resistance to the olive fruit fly involves a number of biological functions, cellular processes and metabolic pathways, including those with a known role in defence, oxidative stress responses, cellular structure, hormone signalling, and primary and secondary metabolism. The difference in the induced transcriptional changes between the cultivars suggests a strong genetic role in the olive inducible defence, which can ultimately lead to the discovery of factors associated with a higher level of tolerance to B. oleae.


Subject(s)
Gene Expression Regulation, Plant , Olea/genetics , Olea/parasitology , Plant Diseases/genetics , Plant Diseases/parasitology , Tephritidae/physiology , Animals , Fruit/genetics , Fruit/parasitology , Fruit/physiology , Host-Parasite Interactions , Metabolic Networks and Pathways , Olea/physiology , Transcriptome
9.
FEBS Open Bio ; 7(4): 456-471, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28396831

ABSTRACT

Light plays a key role in the regulation of many physiological processes required for plant and chloroplast development. Plant cryptochromes (crys) play an important role in monitoring, capturing, and transmitting the light stimuli. In this study, we analyzed the effects of CRY2 overexpression on transcription of tomato chloroplast genome by a tiling array, containing about 90 000 overlapping probes (5-nucleotide resolution). We profiled transcription in leaves of wild-type and CRY2-overexpressing plants grown in a diurnal cycle, to generate a comprehensive map of chloroplast transcription and to monitor potential specific modulations of the chloroplast transcriptome induced by the overexpression of CRY2. Our results demonstrate that CRY2 is a master gene of transcriptional regulation in the tomato chloroplast. In fact, it modulates the day/night mRNA abundance of about 58% of the 114 ORFs. The effect of CRY2 includes a differential extension of some transcripts at their 5'-end, according to the period of the day. We observed that the influence of CRY2 on chloroplast transcription is not limited to coding RNA; a great number of putative noncoding micro RNA also showed differential accumulation pattern. To our knowledge, this is the first study that highlights how a photoreceptor affects the day/night transcription of the chloroplast genome.

10.
PLoS One ; 11(4): e0152943, 2016.
Article in English | MEDLINE | ID: mdl-27077738

ABSTRACT

The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.


Subject(s)
Flowers/growth & development , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Olea/growth & development , Olea/genetics , Fruit/growth & development , Molecular Sequence Annotation , Olea/physiology , Pollen/physiology , Pollination , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sex Differentiation/genetics
11.
Plant Signal Behav ; 7(8): 1034-6, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22827952

ABSTRACT

Light is one of the most important environmental signal for plants. Involvement of hormones, such as gibberellic acid, in light regulated development has been known for many years, though the molecular mechanisms remain still largely unknown. To shed light on possible interactions between phyto-hormones and photoperceptive photoreceptors of tomato, in a recent work we investigated the molecular effects of exogenous gibberellin to cryptochrome and phytochrome transcripts in wild type tomato as well as in a mutant genotype with a non-functional cryptochrome 1a and in a transgenic line overexpressing cryptochrome 2. Results highlight that following addition of gibberellin, cryptochrome and phytochrome transcription patterns are strongly modified, especially in cryptochrome 1a deficient plants. Our results suggest that cryptochrome mediated light responses can be modulated by gibberellin accumulation level, in tomato plants.


Subject(s)
Circadian Rhythm/genetics , Cryptochromes/genetics , Cryptochromes/metabolism , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Solanum lycopersicum/genetics , Transcription, Genetic/drug effects , Circadian Rhythm/drug effects , Genotype , Solanum lycopersicum/drug effects , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
PLoS One ; 7(1): e30121, 2012.
Article in English | MEDLINE | ID: mdl-22272283

ABSTRACT

BACKGROUND: Plant photoreceptors, phytochromes and cryptochromes, regulate many aspects of development and growth, such as seed germination, stem elongation, seedling de-etiolation, cotyledon opening, flower induction and circadian rhythms. There are several pieces of evidence of interaction between photoreceptors and phyto-hormones in all of these physiological processes, but little is known about molecular and genetic mechanisms underlying hormone-photoreceptor crosstalk. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we investigated the molecular effects of exogenous phyto-hormones to photoreceptor gene transcripts of tomato wt, as well as transgenic and mutant lines with altered cryptochromes, by monitoring day/night transcript oscillations. GA and auxin alter the diurnal expression level of different photoreceptor genes in tomato, especially in mutants that lack a working form of cryptochrome 1a: in those mutants the expression of some (IAA) or most (GA) photoreceptor genes is down regulated by these hormones. CONCLUSIONS/SIGNIFICANCE: Our results highlight the presence of molecular relationships among cryptochrome 1a protein, hormones, and photoreceptors' gene expression in tomato, suggesting that manipulation of cryptochromes could represent a good strategy to understand in greater depth the role of phyto-hormones in the plant photoperceptive mechanism.


Subject(s)
Cryptochromes/genetics , Gene Expression Regulation, Plant/drug effects , Gibberellins/pharmacology , Indoleacetic Acids/pharmacology , Photoreceptors, Plant/genetics , Solanum lycopersicum/genetics , Circadian Rhythm/genetics , Gene Expression Profiling , Mutation , Plant Growth Regulators/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
13.
Plant Cell Environ ; 35(5): 994-1012, 2012 May.
Article in English | MEDLINE | ID: mdl-22082487

ABSTRACT

In order to sense and respond to the fluctuating light conditions, higher plants possess several families of photoreceptors, such as phytochromes (PHYs), cryptochromes (CRYs) and phototropins. CRYs are responsible for photomorphogenesis and play a role in circadian, developmental and adaptive growth regulation of plants. In tomato (Solanum lycopersicum), CRY2 controls vegetative development, flowering time, fruit antioxidant content as well as the diurnal transcription of several other photoreceptor genes. We applied large-scale molecular approaches to identify altered transcripts and proteins in tomato wild-type (WT) versus a CRY2 overexpressing transgenic genotype, under a diurnal rhythm. Our results showed that tomato CRY2 profoundly affects both gene and protein expression in response to daily light cycle. Particularly altered molecular pathways are related to biotic/abiotic stress, photosynthesis, including components of the light and dark reactions and of starch and sucrose biosynthesis, as well as to secondary metabolism, such as phenylpropanoid, phenolic and flavonoid/anthocyanin biosynthesis pathways. One of the most interesting results is the coordinated up-regulation, in the transgenic genotype, of a consistent number of transcripts and proteins involved in photorespiration and photosynthesis. It is conceivable that light modulates the energetic metabolism of tomato through a fine CRY2-mediated transcriptional control.


Subject(s)
Circadian Rhythm , Cryptochromes/genetics , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/genetics , Stress, Physiological/genetics , Cell Respiration , Chloroplasts/genetics , Cryptochromes/metabolism , Down-Regulation/genetics , Down-Regulation/radiation effects , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , Gene Expression Regulation, Plant/radiation effects , Light , Solanum lycopersicum/physiology , Solanum lycopersicum/radiation effects , Mitochondria/genetics , Oligonucleotide Array Sequence Analysis , Peroxisomes/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Proteomics , RNA, Plant/genetics , Signal Transduction , Stress, Physiological/radiation effects , Up-Regulation/genetics , Up-Regulation/radiation effects
14.
PLoS One ; 6(10): e26421, 2011.
Article in English | MEDLINE | ID: mdl-22028874

ABSTRACT

Wheat is one of the world's most important crops and is characterized by a large polyploid genome. One way to reduce genome complexity is to isolate single chromosomes using flow cytometry. Low coverage DNA sequencing can provide a snapshot of individual chromosomes, allowing a fast characterization of their main features and comparison with other genomes. We used massively parallel 454 pyrosequencing to obtain a 2x coverage of wheat chromosome 5A. The resulting sequence assembly was used to identify TEs, genes and miRNAs, as well as to infer a virtual gene order based on the synteny with other grass genomes. Repetitive elements account for more than 75% of the genome. Gene content was estimated considering non-redundant reads showing at least one match to ESTs or proteins. The results indicate that the coding fraction represents 1.08% and 1.3% of the short and long arm respectively, projecting the number of genes of the whole chromosome to approximately 5,000. 195 candidate miRNA precursors belonging to 16 miRNA families were identified. The 5A genes were used to search for syntenic relationships between grass genomes. The short arm is closely related to Brachypodium chromosome 4, sorghum chromosome 8 and rice chromosome 12; the long arm to regions of Brachypodium chromosomes 4 and 1, sorghum chromosomes 1 and 2 and rice chromosomes 9 and 3. From these similarities it was possible to infer the virtual gene order of 392 (5AS) and 1,480 (5AL) genes of chromosome 5A, which was compared to, and found to be largely congruent with the available physical map of this chromosome.


Subject(s)
Chromosomes, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis/methods , Triticum/genetics , Computational Biology , Conserved Sequence/genetics , Contig Mapping , DNA Transposable Elements/genetics , Gene Order/genetics , Genes, Plant/genetics , MicroRNAs/genetics , Nucleic Acid Amplification Techniques , Synteny/genetics
15.
PLoS One ; 3(7): e2798, 2008 Jul 30.
Article in English | MEDLINE | ID: mdl-18665253

ABSTRACT

BACKGROUND: Circadian clocks are internal molecular time-keeping mechanisms that provide living organisms with the ability to adjust their growth and physiology and to anticipate diurnal environmental changes. Circadian clocks, without exception, respond to light and, in plants, light is the most potent and best characterized entraining stimulus. The capacity of plants to respond to light is achieved through a number of photo-perceptive proteins including cryptochromes and phytochromes. There is considerable experimental evidence demonstrating the roles of photoreceptors in providing light input to the clock. METHODOLOGY: In order to identify genes regulated by diurnal and circadian rhythms, and to establish possible functional relations between photoreceptors and the circadian clock in tomato, we monitored the temporal transcription pattern in plants entrained to long-day conditions, either by large scale comparative profiling, or using a focused approach over a number of photosensory and clock-related genes by QRT-PCR. In parallel, focused transcription analyses were performed in cry1a- and in CRY2-OX tomato genotypes. CONCLUSIONS: We report a large series of transcript oscillations that shed light on the complex network of interactions among tomato photoreceptors and clock-related genes. Alteration of cryptochrome gene expression induced major changes in the rhythmic oscillations of several other gene transcripts. In particular, over-expression of CRY2 had an impact not only on day/night fluctuations but also on rhythmicity under constant light conditions. Evidence was found for widespread diurnal oscillations of transcripts encoding specific enzyme classes (e.g. carotenoid biosynthesis enzymes) as well as for post-transcriptional diurnal and circadian regulation of the CRY2 transcript.


Subject(s)
Flavoproteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Photoreceptor Cells/metabolism , Plant Proteins/physiology , Solanum lycopersicum/metabolism , Biological Clocks , Circadian Rhythm , Cluster Analysis , Cryptochromes , Genes, Plant , Oligonucleotide Array Sequence Analysis , Oscillometry , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
16.
FEBS Lett ; 580(19): 4618-24, 2006 Aug 21.
Article in English | MEDLINE | ID: mdl-16876787

ABSTRACT

Recently a new member of the blue-light photoreceptor family, CRY-DASH, was reported in Arabidopsis, though its distinctive biological functions are still unclear. We characterized the CRY-DASH gene of tomato and evidenced that its mRNA is expressed in both seeds and adult organs showing diurnal and circadian fluctuations. Moreover, the CRY-DASH transcription pattern is altered in both in a cry1a mutant and in a transgenic CRY2 overexpressor suggesting that CRY-DASH regulation must be mediated at least partially by an interaction of CRY1a and CRY2 with the timekeeping mechanism.


Subject(s)
Circadian Rhythm/genetics , Flavoproteins/genetics , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Amino Acid Sequence , Flavoproteins/chemistry , In Situ Hybridization , Molecular Sequence Data , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...