Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36671685

ABSTRACT

Advances in wearable device technology pave the way for wireless health monitoring for medical and non-medical applications. In this work, we present a wearable heart rate monitoring platform communicating in the sub-6GHz 5G ISM band. The proposed device is composed of an Aluminium Nitride (AlN) piezoelectric sensor, a patch antenna, and a custom printed circuit board (PCB) for data acquisition and transmission. The experimental results show that the presented system can acquire heart rate together with diastolic and systolic duration, which are related to heart relaxation and contraction, respectively, from the posterior tibial artery. The overall system dimension is 20 mm by 40 mm, and the total weight is 20 g, making this device suitable for daily utilization. Furthermore, the system allows the simultaneous monitoring of multiple subjects, or a single patient from multiple body locations by using only one reader. The promising results demonstrate that the proposed system is applicable to the Internet of Healthcare Things (IoHT), and particularly Integrated Clinical Environment (ICE) applications.

2.
Sensors (Basel) ; 22(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36236773

ABSTRACT

Personalised healthcare has seen significant improvements due to the introduction of health monitoring technologies that allow wearable devices to unintrusively monitor physiological parameters such as heart health, blood pressure, sleep patterns, and blood glucose levels, among others. Additionally, utilising advanced sensing technologies based on flexible and innovative biocompatible materials in wearable devices allows high accuracy and precision measurement of biological signals. Furthermore, applying real-time Machine Learning algorithms to highly accurate physiological parameters allows precise identification of unusual patterns in the data to provide health event predictions and warnings for timely intervention. However, in the predominantly adopted architectures, health event predictions based on Machine Learning are typically obtained by leveraging Cloud infrastructures characterised by shortcomings such as delayed response times and privacy issues. Fortunately, recent works highlight that a new paradigm based on Edge Computing technologies and on-device Artificial Intelligence significantly improve the latency and privacy issues. Applying this new paradigm to personalised healthcare architectures can significantly improve their efficiency and efficacy. Therefore, this paper reviews existing IoT healthcare architectures that utilise wearable devices and subsequently presents a scalable and modular system architecture to leverage emerging technologies to solve identified shortcomings. The defined architecture includes ultrathin, skin-compatible, flexible, high precision piezoelectric sensors, low-cost communication technologies, on-device intelligence, Edge Intelligence, and Edge Computing technologies. To provide development guidelines and define a consistent reference architecture for improved scalable wearable IoT-based critical healthcare architectures, this manuscript outlines the essential functional and non-functional requirements based on deductions from existing architectures and emerging technology trends. The presented system architecture can be applied to many scenarios, including ambient assisted living, where continuous surveillance and issuance of timely warnings can afford independence to the elderly and chronically ill. We conclude that the distribution and modularity of architecture layers, local AI-based elaboration, and data packaging consistency are the more essential functional requirements for critical healthcare application use cases. We also identify fast response time, utility, comfort, and low cost as the essential non-functional requirements for the defined system architecture.


Subject(s)
Artificial Intelligence , Blood Glucose , Aged , Biocompatible Materials , Delivery of Health Care , Humans , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...