Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Neurology ; 103(3): e209524, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38981074

ABSTRACT

BACKGROUND AND OBJECTIVES: Temporal lobe epilepsy (TLE) is assumed to follow a steady course that is similar across patients. To date, phenotypic and temporal diversities of TLE evolution remain unknown. In this study, we aimed at simultaneously characterizing these sources of variability based on cross-sectional data. METHODS: We studied consecutive patients with TLE referred for evaluation by neurologists to the Montreal Neurological Institute epilepsy clinic, who underwent in-patient video EEG monitoring and multimodal imaging at 3 Tesla, comprising 3D T1 and fluid-attenuated inversion recovery and 2D diffusion-weighted MRI. The cohort included patients with drug-resistant epilepsy and patients with drug-responsive epilepsy. The neuropsychological evaluation included Wechsler Adult Intelligence Scale-III and Leonard tapping task. The control group consisted of participants without TLE recruited through advertisement and who underwent the same MRI acquisition as patients. Based on surface-based analysis of key MRI markers of pathology (gray matter morphology and white matter microstructure), the Subtype and Stage Inference algorithm estimated subtypes and stages of brain pathology to which individual patients were assigned. The number of subtypes was determined by running the algorithm 100 times and estimating mean and SD of disease trajectories and the consistency of patients' assignments based on 1,000 bootstrap samples. Effect of normal aging was subtracted from patients. We examined associations with clinical and cognitive parameters and utility for individualized predictions. RESULTS: We studied 82 patients with TLE (52 female, mean age 35 ± 10 years; 11 drug-responsive) and 41 control participants (23 male, mean age 32 ± 8 years). Among 57 operated, 43/37/20 had Engel-I outcome/hippocampal sclerosis/hippocampal isolated gliosis, respectively. We identified 3 trajectory subtypes: S1 (n = 35), led by ipsilateral hippocampal atrophy and gliosis, followed by white-matter damage; S2 (n = 27), characterized by bilateral neocortical atrophy, followed by ipsilateral hippocampal atrophy and gliosis; and S3 (n = 20), typified by bilateral limbic white-matter damage, followed by bilateral hippocampal gliosis. Patients showed high assignability to their subtypes and stages (>90% bootstrap agreement). S1 had the highest proportions of patients with early disease onset (effect size d = 0.27 vs S2, d = 0.73 vs S3), febrile convulsions (χ2 = 3.70), drug resistance (χ2 = 2.94), a positive MRI (χ2 = 8.42), hippocampal sclerosis (χ2 = 7.57), and Engel-I outcome (χ2 = 1.51), pFDR < 0.05 across all comparisons. S2 and S3 exhibited the intermediate and lowest proportions, respectively. Verbal IQ and digit span were lower in S1 (d = 0.65 and d = 0.50, pFDR < 0.05) and S2 (d = 0.76 and d = 1.09, pFDR < 0.05), compared with S3. We observed progressive decline in sequential motor tapping in S1 and S3 (T = -3.38 and T = -4.94, pFDR = 0.027), compared with S2 (T = 2.14, pFDR = 0.035). S3 showed progressive decline in digit span (T = -5.83, p = 0.021). Supervised classifiers trained on subtype and stage outperformed subtype-only and stage-only models predicting drug response in 73% ± 1.0% (vs 70% ± 1.4% and 63% ± 1.3%) and 76% ± 1.6% for Engel-I outcome (vs 71% ± 0.8% and 72% ± 1.1%), pFDR < 0.05 across all comparisons. DISCUSSION: Cross-sectional MRI-derived models provide reliable prognostic markers of TLE disease evolution, which follows distinct trajectories, each associated with divergent patterns of hippocampal and whole-brain structural alterations, as well as cognitive and clinical profiles.


Subject(s)
Disease Progression , Epilepsy, Temporal Lobe , Magnetic Resonance Imaging , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology , Female , Male , Adult , Middle Aged , Cross-Sectional Studies , Electroencephalography , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/pathology , Young Adult , White Matter/diagnostic imaging , White Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Neuropsychological Tests
2.
Brain ; 145(3): 897-908, 2022 04 29.
Article in English | MEDLINE | ID: mdl-34849619

ABSTRACT

In drug-resistant temporal lobe epilepsy, precise predictions of drug response, surgical outcome and cognitive dysfunction at an individual level remain challenging. A possible explanation may lie in the dominant 'one-size-fits-all' group-level analytical approaches that does not allow parsing interindividual variations along the disease spectrum. Conversely, analysing inter-patient heterogeneity is increasingly recognized as a step towards person-centred care. Here, we used unsupervised machine learning to estimate latent relations (or disease factors) from 3 T multimodal MRI features [cortical thickness, hippocampal volume, fluid-attenuated inversion recovery (FLAIR), T1/FLAIR, diffusion parameters] representing whole-brain patterns of structural pathology in 82 patients with temporal lobe epilepsy. We assessed the specificity of our approach against age- and sex-matched healthy individuals and a cohort of frontal lobe epilepsy patients with histologically verified focal cortical dysplasia. We identified four latent disease factors variably co-expressed within each patient and characterized by ipsilateral hippocampal microstructural alterations, loss of myelin and atrophy (Factor 1), bilateral paralimbic and hippocampal gliosis (Factor 2), bilateral neocortical atrophy (Factor 3) and bilateral white matter microstructural alterations (Factor 4). Bootstrap analysis and parameter variations supported high stability and robustness of these factors. Moreover, they were not expressed in healthy controls and only negligibly in disease controls, supporting specificity. Supervised classifiers trained on latent disease factors could predict patient-specific drug response in 76 ± 3% and postsurgical seizure outcome in 88 ± 2%, outperforming classifiers that did not operate on latent factor information. Latent factor models predicted inter-patient variability in cognitive dysfunction (verbal IQ: r = 0.40 ± 0.03; memory: r = 0.35 ± 0.03; sequential motor tapping: r = 0.36 ± 0.04), again outperforming baseline learners. Data-driven analysis of disease factors provides a novel appraisal of the continuum of interindividual variability, which is probably determined by multiple interacting pathological processes. Incorporating interindividual variability is likely to improve clinical prognostics.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Epilepsy , Atrophy/pathology , Drug Resistant Epilepsy/pathology , Epilepsy/pathology , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Humans , Magnetic Resonance Imaging
3.
Epilepsia ; 62(11): 2589-2603, 2021 11.
Article in English | MEDLINE | ID: mdl-34490890

ABSTRACT

OBJECTIVE: Drug-resistant temporal lobe epilepsy (TLE) is typically associated with hippocampal pathology. However, widespread network alterations are increasingly recognized and suggested to perturb cognitive function in multiple domains. Here we tested (1) whether TLE shows atypical cortical hierarchical organization, differentiating sensory and higher order systems; and (2) whether atypical hierarchy predicts cognitive impairment. METHODS: We studied 72 well-characterized drug-resistant TLE patients and 41 healthy controls, statistically matched for age and sex, using multimodal magnetic resonance imaging analysis and cognitive testing. To model cortical hierarchical organization in vivo, we used a bidirectional stepwise functional connectivity analysis tapping into the differentiation between sensory/unimodal and paralimbic/transmodal cortices. Linear models compared patients to controls. Finally, we assessed associations of functional anomalies to cortical atrophy and microstructural anomalies, as well as clinical and cognitive parameters. RESULTS: Compared to controls, TLE presented with bidirectional disruptions of sensory-paralimbic functional organization. Stepwise connectivity remained segregated within paralimbic and salience networks at the top of the hierarchy, and sensorimotor and dorsal attention at the bottom. Whereas paralimbic segregation was associated with atypical cortical myeloarchitecture and hippocampal atrophy, dysconnectivity of sensorimotor cortices reflected diffuse cortical thinning. The degree of abnormal hierarchical organization in sensory-petal streams covaried, with broad cognitive impairments spanning sensorimotor, attention, fluency, and visuoconstructional ability and memory, and was more marked in patients with longer disease duration and Engel I outcome. SIGNIFICANCE: Our findings show atypical functional integration between paralimbic/transmodal and sensory/unimodal systems in TLE. Differential associations with paralimbic microstructure and sensorimotor atrophy suggest that system-level imbalance likely reflects complementary structural processes, but ultimately accounts for a broad spectrum of cognitive impairments. Hierarchical contextualization of cognitive deficits promises to open new avenues for personalized counseling in TLE.


Subject(s)
Connectome , Epilepsy, Temporal Lobe , Atrophy/pathology , Cognition , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods
4.
Neurology ; 97(16): e1583-e1593, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34475125

ABSTRACT

BACKGROUND AND OBJECTIVES: MRI fails to reveal hippocampal pathology in 30% to 50% of temporal lobe epilepsy (TLE) surgical candidates. To address this clinical challenge, we developed an automated MRI-based classifier that lateralizes the side of covert hippocampal pathology in TLE. METHODS: We trained a surface-based linear discriminant classifier that uses T1-weighted (morphology) and T2-weighted and fluid-attenuated inversion recovery (FLAIR)/T1 (intensity) features. The classifier was trained on 60 patients with TLE (mean age 35.6 years, 58% female) with histologically verified hippocampal sclerosis (HS). Images were deemed to be MRI negative in 42% of cases on the basis of neuroradiologic reading (40% based on hippocampal volumetry). The predictive model automatically labeled patients as having left or right TLE. Lateralization accuracy was compared to electroclinical data, including side of surgery. Accuracy of the classifier was further assessed in 2 independent TLE cohorts with similar demographics and electroclinical characteristics (n = 57, 58% MRI negative). RESULTS: The overall lateralization accuracy was 93% (95% confidence interval 92%-94%), regardless of HS visibility. In MRI-negative TLE, the combination of T2 and FLAIR/T1 intensities provided the highest accuracy in both the training (84%, area under the curve [AUC] 0.95 ± 0.02) and validation (cohort 1 90%, AUC 0.99; cohort 2 76%, AUC 0.94) cohorts. DISCUSSION: This prediction model for TLE lateralization operates on readily available conventional MRI contrasts and offers gain in accuracy over visual radiologic assessment. The combined contribution of decreased T1- and increased T2-weighted intensities makes the synthetic FLAIR/T1 contrast particularly effective in MRI-negative HS, setting the basis for broad clinical translation. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in people with TLE and MRI-negative HS, an automated MRI-based classifier accurately determines the side of pathology.


Subject(s)
Epilepsy, Temporal Lobe/diagnostic imaging , Hippocampus/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Machine Learning , Neuroimaging/methods , Adolescent , Adult , Epilepsy, Temporal Lobe/pathology , Female , Functional Laterality , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Sclerosis/diagnostic imaging , Sclerosis/pathology , Young Adult
5.
Epilepsia ; 62(4): 1022-1033, 2021 04.
Article in English | MEDLINE | ID: mdl-33705572

ABSTRACT

OBJECTIVE: Although temporal lobe epilepsy (TLE) is recognized as a system-level disorder, little work has investigated pathoconnectomics from a dynamic perspective. By leveraging computational simulations that quantify patterns of information flow across the connectome, we tested the hypothesis that network communication is abnormal in this condition, studied the interplay between hippocampal- and network-level disease effects, and assessed associations with cognition. METHODS: We simulated signal spreading via a linear threshold model that temporally evolves on a structural graph derived from diffusion-weighted magnetic resonance imaging (MRI), comparing a homogeneous group of 31 patients with histologically proven hippocampal sclerosis to 31 age- and sex-matched healthy controls. We evaluated the modulatory effects of structural alterations of the neocortex and hippocampus on network dynamics. Furthermore, multivariate statistics addressed the relationship with cognitive parameters. RESULTS: We observed a slowing of in- and out-spreading times across multiple areas bilaterally, indexing delayed information flow, with the strongest effects in ipsilateral frontotemporal regions, thalamus, and hippocampus. Effects were markedly reduced when controlling for hippocampal volume but not cortical thickness, underscoring the central role of the hippocampus in whole-brain disease expression. Multivariate analysis associated slower spreading time in frontoparietal, limbic, default mode, and subcortical networks with impairment across tasks tapping into sensorimotor, executive, memory, and verbal abilities. SIGNIFICANCE: Moving beyond descriptions of static topology toward the formulation of brain dynamics, our work provides novel insight into structurally mediated network dysfunction and demonstrates that altered whole-brain communication dynamics contribute to common cognitive difficulties in TLE.


Subject(s)
Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/physiopathology , Connectome/methods , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology , Magnetic Resonance Imaging/methods , Adolescent , Adult , Cohort Studies , Female , Humans , Male , Middle Aged , Young Adult
6.
Neuroimage Clin ; 28: 102438, 2020.
Article in English | MEDLINE | ID: mdl-32987299

ABSTRACT

OBJECTIVE: Focal cortical dysplasia (FCD) is the most common epileptogenic developmental malformation and a prevalent cause of surgically amenable epilepsy. While cellular and molecular biology data suggest that FCD lesional characteristics lie along a spectrum, this notion remains to be verified in vivo. We tested the hypothesis that machine learning applied to MRI captures FCD lesional variability at a mesoscopic scale. METHODS: We studied 46 patients with histologically verified FCD Type II and 35 age- and sex-matched healthy controls. We applied consensus clustering, an unsupervised learning technique that identifies stable clusters based on bootstrap-aggregation, to 3 T multicontrast MRI (T1-weighted MRI and FLAIR) features of FCD normalized with respect to distributions in controls. RESULTS: Lesions were parcellated into four classes with distinct structural profiles variably expressed within and across patients: Class-1 with isolated white matter (WM) damage; Class-2 combining grey matter (GM) and WM alterations; Class-3 with isolated GM damage; Class-4 with GM-WM interface anomalies. Class membership was replicated in two independent datasets. Classes with GM anomalies impacted local function (resting-state fMRI derived ALFF), while those with abnormal WM affected large-scale connectivity (assessed by degree centrality). Overall, MRI classes reflected typical histopathological FCD characteristics: Class-1 was associated with severe WM gliosis and interface blurring, Class-2 with severe GM dyslamination and moderate WM gliosis, Class-3 with moderate GM gliosis, Class-4 with mild interface blurring. A detection algorithm trained on class-informed data outperformed a class-naïve paradigm. SIGNIFICANCE: Machine learning applied to widely available MRI contrasts uncovers FCD Type II variability at a mesoscopic scale and identifies tissue classes with distinct structural dimensions, functional and histopathological profiles. Integrating in vivo staging of FCD traits with automated lesion detection is likely to inform the development of novel personalized treatments.


Subject(s)
Epilepsy , Malformations of Cortical Development, Group I , Malformations of Cortical Development , Humans , Magnetic Resonance Imaging , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development, Group I/diagnostic imaging , Unsupervised Machine Learning
7.
Neurology ; 95(17): e2418-e2426, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32817185

ABSTRACT

OBJECTIVE: To test the hypothesis that in periventricular nodular heterotopia (PVNH) structure and function of cortical areas overlying the heterotopic gray matter are preferentially affected. METHODS: We studied a group of 40 patients with PVNH and normal-appearing cortex and compared their quantitative MRI markers of brain development, structure, and function to those of 43 age- and sex-matched healthy controls. Inspired by models of neocortical development suggesting that neuronal migration follows a curvilinear path to preserve topologic correspondence between the outer ventricular zone and the cortical surface, we computationally defined the overlying cortex using the Laplace equation and generated synthetic streamlines that link the ventricles, where nodules are located, and the neocortex. RESULTS: We found multilobar cortical thickening encompassing prefrontal, latero-basal temporal, and temporoparietal cortices largely corresponding with the PVNH group-averaged map of the overlying cortex, the latter colocalized with areas of abnormal function, as defined by resting-state fMRI. Patients also presented hippocampal functional hyperconnectivity and malrotation, the latter positively correlating with neocortical maldevelopment indexed by increased folding complexity of the parahippocampus. In clusters of thickness and curvature findings, there were no significant differences between unilateral and bilateral PVNH; contrasting brain-wide metrics between cohorts was also unrevealing. There was no relationship between imaging markers and disease duration except for positive correlation with functional anomalies. CONCLUSION: Our quantitative image analysis demonstrates widespread structural and functional alterations in PVNH with differential interaction with the overlying cortex and the hippocampus. Right hemispheric predominance may be explained by an early insult, likely genetically determined, on brain morphogenesis.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Periventricular Nodular Heterotopia/diagnostic imaging , Adult , Brain Mapping , Cerebral Cortex/diagnostic imaging , Cerebral Ventricles/diagnostic imaging , Drug Resistant Epilepsy/complications , Drug Resistant Epilepsy/diagnostic imaging , Electroencephalography , Functional Laterality , Gray Matter/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Male , Models, Neurological , Multimodal Imaging , Neocortex/growth & development , Parahippocampal Gyrus/diagnostic imaging , Phenotype , Young Adult
8.
Neurology ; 93(13): e1272-e1280, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31467252

ABSTRACT

OBJECTIVE: MRI studies of genetic generalized epilepsies have mainly described group-level changes between patients and healthy controls. To determine the endophenotypic potential of structural MRI in juvenile myoclonic epilepsy (JME), we examined MRI-based cortical morphologic markers in patients and their healthy siblings. METHODS: In this prospective, cross-sectional study, we obtained 3T MRI in patients with JME, siblings, and controls. We mapped sulco-gyral complexity and surface area, morphologic markers of brain development, and cortical thickness. Furthermore, we calculated mean geodesic distance, a surrogate marker of cortico-cortical connectivity. RESULTS: Compared to controls, patients and siblings showed increased folding complexity and surface area in prefrontal and cingulate cortices. In these regions, they also displayed abnormally increased geodesic distance, suggesting network isolation and decreased efficiency, with strongest effects for limbic, fronto-parietal, and dorsal-attention networks. In areas of findings overlap, we observed strong patient-sibling correlations. Conversely, neocortical thinning was present in patients only and related to disease duration. Patients showed subtle impairment in mental flexibility, a frontal lobe function test, as well as deficits in naming and design learning. Siblings' performance fell between patients and controls. CONCLUSION: MRI markers of brain development and connectivity are likely heritable and may thus serve as endophenotypes. The topography of morphologic anomalies and their abnormal structural network integration likely explains cognitive impairments in patients with JME and their siblings. By contrast, cortical atrophy likely represents a marker of disease.


Subject(s)
Electroencephalography , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Myoclonic Epilepsy, Juvenile/physiopathology , Adult , Aged , Attention/physiology , Biomarkers/analysis , Cross-Sectional Studies , Electroencephalography/methods , Endophenotypes , Epilepsy, Generalized/physiopathology , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Myoclonic Epilepsy, Juvenile/diagnosis , Neuropsychological Tests , Prospective Studies , Siblings
9.
Neurology ; 92(19): e2209-e2220, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31004070

ABSTRACT

OBJECTIVE: To assess whether hippocampal sclerosis (HS) severity is mirrored at the level of large-scale networks. METHODS: We studied preoperative high-resolution anatomical and diffusion-weighted MRI of 44 temporal lobe epilepsy (TLE) patients with histopathologic diagnosis of HS (n = 25; TLE-HS) and isolated gliosis (n = 19; TLE-G) and 25 healthy controls. Hippocampal measurements included surface-based subfield mapping of atrophy and T2 hyperintensity indexing cell loss and gliosis, respectively. Whole-brain connectomes were generated via diffusion tractography and examined using graph theory along with a novel network control theory paradigm that simulates functional dynamics from structural network data. RESULTS: Compared to controls, we observed markedly increased path length and decreased clustering in TLE-HS compared to controls, indicating lower global and local network efficiency, while TLE-G showed only subtle alterations. Similarly, network controllability was lower in TLE-HS only, suggesting limited range of functional dynamics. Hippocampal imaging markers were positively associated with macroscale network alterations, particularly in ipsilateral CA1-3. Systematic assessment across several networks revealed maximal changes in the hippocampal circuity. Findings were consistent when correcting for cortical thickness, suggesting independence from gray matter atrophy. CONCLUSIONS: Severe HS is associated with marked remodeling of connectome topology and structurally governed functional dynamics in TLE, as opposed to isolated gliosis, which has negligible effects. Cell loss, particularly in CA1-3, may exert a cascading effect on brain-wide connectomes, underlining coupled disease processes across multiple scales.


Subject(s)
Connectome , Epilepsy, Temporal Lobe/pathology , Gliosis/pathology , Hippocampus/pathology , Adult , Atrophy/pathology , Atrophy/physiopathology , Diffusion Magnetic Resonance Imaging , Epilepsy, Temporal Lobe/physiopathology , Female , Gliosis/physiopathology , Hippocampus/physiopathology , Humans , Magnetic Resonance Imaging , Male , Young Adult
10.
Neuroimage ; 182: 294-303, 2018 11 15.
Article in English | MEDLINE | ID: mdl-28583883

ABSTRACT

The majority of MRI studies in temporal lobe epilepsy (TLE) have utilized morphometry to map widespread cortical alterations. Morphological markers, such as cortical thickness or grey matter density, reflect combinations of biological events largely driven by overall cortical geometry rather than intracortical tissue properties. Because of its sensitivity to intracortical myelin, quantitative measurement of longitudinal relaxation time (qT1) provides and an in vivo proxy for cortical microstructure. Here, we mapped the regional distribution of qT1 in a consecutive cohort of 24 TLE patients and 20 healthy controls. Compared to controls, patients presented with a strictly ipsilateral distribution of qT1 increases in temporopolar, parahippocampal and orbitofrontal cortices. Supervised statistical learning applied to qT1 maps could lateralize the seizure focus in 92% of patients. Intracortical profiling of qT1 along streamlines perpendicular to the cortical mantle revealed marked effects in upper levels that tapered off at the white matter interface. Findings remained robust after correction for cortical thickness and interface blurring, suggesting independence from previously reported morphological anomalies in this disorder. Mapping of qT1 along hippocampal subfield surfaces revealed marked increases in anterior portions of the ipsilateral CA1-3 and DG that were also robust against correction for atrophy. Notably, in operated patients, qualitative histopathological analysis of myelin stains in resected hippocampal specimens confirmed disrupted internal architecture and fiber organization. Both hippocampal and neocortical qT1 anomalies were more severe in patients with early disease onset. Finally, analysis of resting-state connectivity from regions of qT1 increases revealed altered intrinsic functional network embedding in patients, particularly to prefrontal networks. Analysis of qT1 suggests a preferential susceptibility of ipsilateral limbic cortices to microstructural damage, possibly related to disrupted myeloarchitecture. These alterations may reflect atypical neurodevelopment and affect the integrity of fronto-limbic functional networks.


Subject(s)
Brain Mapping/methods , Cerebral Cortex , Epilepsy, Temporal Lobe , Magnetic Resonance Imaging/methods , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/physiopathology , Female , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Limbic Lobe/diagnostic imaging , Limbic Lobe/pathology , Limbic Lobe/physiopathology , Male , Middle Aged , Young Adult
11.
Epilepsy Res ; 128: 158-162, 2016 12.
Article in English | MEDLINE | ID: mdl-27838503

ABSTRACT

PURPOSES: To determine 1H-MRSI metabolites changes in interictal and postictal phases of patients suffering from mesial temporal lobe epilepsy with hippocampal sclerosis and lateralization of seizure foci. MATERIALS AND METHODS: MR spectroscopic imaging was performed in 5 adult patients with refractory temporal lobe epilepsy interictally and immediately after the seizure and in 4 adult control subjects. All patients underwent MR imaging and VideoEEG Monitoring. RESULTS: The results showed statistically significant decreases in N-acetylaspartate/Creatine, N-acetylaspartate/Choline and N-acetylaspartate/(creatine+choline) immediately after ictus in ipsilateral hippocampus as compared with control data and contralateral hippocampus of patients while no statistically significant difference was presented in interictal phase. CONCLUSION: The present study clearly indicates 1H-MRS abnormalities following an ictus of temporal lobe epilepsy with metabolite recovery in interictal phase. This finding suggests postictal 1H-MRS as a possible useful tool to assist in lateralizing and localizing of seizure foci in epileptic patients with structural lesions.


Subject(s)
Drug Resistant Epilepsy/metabolism , Epilepsy, Temporal Lobe/metabolism , Seizures/metabolism , Temporal Lobe/metabolism , Adult , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Choline/metabolism , Creatinine/metabolism , Drug Resistant Epilepsy/diagnostic imaging , Electroencephalography , Epilepsy, Temporal Lobe/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Proton Magnetic Resonance Spectroscopy , Seizures/diagnostic imaging , Temporal Lobe/diagnostic imaging , Time Factors , Video Recording , Young Adult
12.
Epilepsy Behav Case Rep ; 2: 145-51, 2014.
Article in English | MEDLINE | ID: mdl-25667894

ABSTRACT

Ictal asystole is a rare, probably underestimated manifestation of epileptic seizures whose pathophysiology is still debated. This report describes two patients who had cardiac asystole at the end of their seizure. The first patient was a 13-year-old boy with complex partial seizures.. His MRI showed symmetrical signal abnormality in the bilateral parietooccipital lobe accompanied by mild gliosis and volume loss. During a 3-day long-term video-EEG monitoring, he had cardiac arrest at the end of one of his seizures that was secondarily generalized. The second one was a 42-year-old veteran with penetrating head trauma in the left frontal lobe due to shell injury. During long-term video-EEG monitoring, he had one generalized tonic-clonic seizure accompanied by bradycardia and cardiac asystole. Asystoles could have a role in the incidence of sudden unexpected death in epilepsy (SUDEP), meaning that the presence of ictal bradycardia is a risk factor for SUDEP. In cases of epileptic cardiac dysrhythmia, prolonged simultaneous EEG/ECG monitoring may be required. Cardiological investigation should be included in epilepsy management.

SELECTION OF CITATIONS
SEARCH DETAIL
...