Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 172: 108132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508058

ABSTRACT

BACKGROUND: So far, baseline Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has played a key role for the application of sophisticated artificial intelligence-based models using Convolutional Neural Networks (CNNs) to extract quantitative imaging information as earlier indicators of pathological Complete Response (pCR) achievement in breast cancer patients treated with neoadjuvant chemotherapy (NAC). However, these models did not exploit the DCE-MRI exams in their full geometry as 3D volume but analysed only few individual slices independently, thus neglecting the depth information. METHOD: This study aimed to develop an explainable 3D CNN, which fulfilled the task of pCR prediction before the beginning of NAC, by leveraging the 3D information of post-contrast baseline breast DCE-MRI exams. Specifically, for each patient, the network took in input a 3D sequence containing the tumor region, which was previously automatically identified along the DCE-MRI exam. A visual explanation of the decision-making process of the network was also provided. RESULTS: To the best of our knowledge, our proposal is competitive than other models in the field, which made use of imaging data alone, reaching a median AUC value of 81.8%, 95%CI [75.3%; 88.3%], a median accuracy value of 78.7%, 95%CI [74.8%; 82.5%], a median sensitivity value of 69.8%, 95%CI [59.6%; 79.9%] and a median specificity value of 83.3%, 95%CI [82.6%; 84.0%], respectively. The median and CIs were computed according to a 10-fold cross-validation scheme for 5 rounds. CONCLUSION: Finally, this proposal holds high potential to support clinicians on non-invasively early pursuing or changing patient-centric NAC pathways.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Humans , Female , Neoadjuvant Therapy/methods , Artificial Intelligence , Contrast Media/therapeutic use , Treatment Outcome , Magnetic Resonance Imaging/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology
2.
Sci Rep ; 13(1): 20605, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996651

ABSTRACT

Non-Small cell lung cancer (NSCLC) is one of the most dangerous cancers, with 85% of all new lung cancer diagnoses and a 30-55% of recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients during diagnosis could be essential to drive targeted therapies preventing either overtreatment or undertreatment of cancer patients. The radiomic analysis of CT images has already shown great potential in solving this task; specifically, Convolutional Neural Networks (CNNs) have already been proposed providing good performances. Recently, Vision Transformers (ViTs) have been introduced, reaching comparable and even better performances than traditional CNNs in image classification. The aim of the proposed paper was to compare the performances of different state-of-the-art deep learning algorithms to predict cancer recurrence in NSCLC patients. In this work, using a public database of 144 patients, we implemented a transfer learning approach, involving different Transformers architectures like pre-trained ViTs, pre-trained Pyramid Vision Transformers, and pre-trained Swin Transformers to predict the recurrence of NSCLC patients from CT images, comparing their performances with state-of-the-art CNNs. Although, the best performances in this study are reached via CNNs with AUC, Accuracy, Sensitivity, Specificity, and Precision equal to 0.91, 0.89, 0.85, 0.90, and 0.78, respectively, Transformer architectures reach comparable ones with AUC, Accuracy, Sensitivity, Specificity, and Precision equal to 0.90, 0.86, 0.81, 0.89, and 0.75, respectively. Based on our preliminary experimental results, it appears that Transformers architectures do not add improvements in terms of predictive performance to the addressed problem.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Deep Learning , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/diagnostic imaging , Neoplasm Recurrence, Local/diagnostic imaging , Neural Networks, Computer
3.
Cancer Med ; 12(22): 20663-20669, 2023 11.
Article in English | MEDLINE | ID: mdl-37905688

ABSTRACT

BACKGROUND: About 15%-20% of breast cancer (BC) cases is classified as Human Epidermal growth factor Receptor type 2 (HER2) positive. The Neoadjuvant chemotherapy (NAC) was initially introduced for locally advanced and inflammatory BC patients to allow a less extensive surgical resection, whereas now it represents the current standard for early-stage and operable BC. However, only 20%-40% of patients achieve pathologic complete response (pCR). According to the results of practice-changing clinical trials, the addition of trastuzumab to NAC brings improvements to pCR, and recently, the use of pertuzumab plus trastuzumab has registered further statistically significant and clinically meaningful improvements in terms of pCR. The goal of our work is to propose a machine learning model to predict the pCR to NAC in HER2-positive patients based on a subset of clinical features. METHOD: First, we evaluated the significant association of clinical features with pCR on the retrospectively collected data referred to 67 patients afferent to Istituto Tumori "Giovanni Paolo II." Then, we performed a feature selection procedure to identify a subset of features to be used for training a machine learning-based classification algorithm. As a result, pCR to NAC was associated with ER status, Pgr status, and HER2 score. RESULTS: The machine learning model trained on a subgroup of essential features reached an AUC of 73.27% (72.44%-73.66%) and an accuracy of 71.67% (71.64%-73.13%). According to our results, the clinical features alone are not enough to define a support system useful for clinical pathway. CONCLUSION: Our results seem worthy of further investigation in large validation studies and this work could be the basis of future study that will also involve radiomics analysis of biomedical images.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Prognosis , Neoadjuvant Therapy/methods , Retrospective Studies , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Trastuzumab/therapeutic use , Machine Learning , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
4.
PLoS One ; 18(5): e0285188, 2023.
Article in English | MEDLINE | ID: mdl-37130116

ABSTRACT

Non-small cell lung cancer (NSCLC) represents 85% of all new lung cancer diagnoses and presents a high recurrence rate after surgery. Thus, an accurate prediction of recurrence risk in NSCLC patients at diagnosis could be essential to designate risk patients to more aggressive medical treatments. In this manuscript, we apply a transfer learning approach to predict recurrence in NSCLC patients, exploiting only data acquired during its screening phase. Particularly, we used a public radiogenomic dataset of NSCLC patients having a primary tumor CT image and clinical information. Starting from the CT slice containing the tumor with maximum area, we considered three different dilatation sizes to identify three Regions of Interest (ROIs): CROP (without dilation), CROP 10 and CROP 20. Then, from each ROI, we extracted radiomic features by means of different pre-trained CNNs. The latter have been combined with clinical information; thus, we trained a Support Vector Machine classifier to predict the NSCLC recurrence. The classification performances of the devised models were finally evaluated on both the hold-out training and hold-out test sets, in which the original sample has been previously divided. The experimental results showed that the model obtained analyzing CROP 20 images, which are the ROIs containing more peritumoral area, achieved the best performances on both the hold-out training set, with an AUC of 0.73, an Accuracy of 0.61, a Sensitivity of 0.63, and a Specificity of 0.60, and on the hold-out test set, with an AUC value of 0.83, an Accuracy value of 0.79, a Sensitivity value of 0.80, and a Specificity value of 0.78. The proposed model represents a promising procedure for early predicting recurrence risk in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Tomography, X-Ray Computed/methods , Machine Learning
5.
Soft Matter ; 19(13): 2297-2310, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36857712

ABSTRACT

Many motile microorganisms communicate with each other and their environments via chemical signaling which leads to long-range interactions mediated by self-generated chemical gradients. However, consequences of the interplay between crowding and chemotactic interactions on their collective behavior remain poorly understood. In this work, we use Brownian dynamics simulations to investigate the effect of packing fraction on the formation of non-equilibrium structures in a monolayer of diffusiophoretic self-propelled colloids as a model for chemically active particles. Focusing on the case when a chemical field induces attractive positional and repulsive orientational interactions, we explore dynamical steady-states of active colloids of varying packing fractions and degrees of motility. In addition to collapsed, active gas, and dynamical clustering steady-states reported earlier for low packing fractions, a new phase-separated state emerges. The phase separation results from a competition between long-range diffusiophoretic interactions and motility and is observed at moderate activities and a wide range of packing fractions. Our analysis suggests that the fraction of particles in the largest cluster is a suitable order parameter for capturing the transition from an active gas and dynamical clustering states to a phase-separated state.

6.
Phys Rev E ; 101(5-1): 052608, 2020 May.
Article in English | MEDLINE | ID: mdl-32575256

ABSTRACT

Three-dimensional simulations with fully resolved hydrodynamics are performed to study the dynamics of a single squirmer with and without gravity to clarify its motion in the vicinity of a flat plate. In the absence of gravity and chirality, the usual dynamics of a squirmer near a wall are recovered. The introduction of chirality modifies the swimming motion of squirmers, adding a component of motion in the third direction. When sedimentation is considered, different dynamics emerge for different gravity strength regimes. In a moderate gravity regime, neutral squirmers and pullers eventually stop moving and reorient in a direction perpendicular to the plate; by contrast, pushers exhibit continuous motion in a tilted direction. In the strong gravity regime, all squirmers sediment and reorient perpendicular to the plate. In this study, chirality is introduced to model realistic microswimmers, and its crucial effects on the nature of squirmer trajectories, which change from straight to circular, are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...