Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Biomater ; 9(3): 107-114, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32627137

ABSTRACT

Surface properties and morphology of the biomaterial play an essential role in the polymer-material interaction. In this work, laser surface modification of polyethylene terephthalate as a polymer with distinguished mechanical properties was carried out using (neodymium-doped yttrium aluminum garnet) Nd:YAG laser (1.064 µm) with different output power (0.3, 3, and 6 W). The structural, surface, and dielectric properties of PET before and after laser irradiation have been studied using attenuation total reflection-Fourier transform infrared (ATR-FTIR), dielectric spectroscopy (DS), scanning electron microscope (SEM), and contact angle measurements. Moreover, the anticoagulant properties of the laser-irradiated PET was determined through measuring the prothrombin time (PT), partial thromboplastin time (PTT), and international normalized ratio (INR). In vitro platelet adhesion test was used to assess the platelets adhered to the surface of the samples; in addition to hematological study. It was found that contact angle (θ) measurements of laser-irradiated PET samples decreased compared to the unirradiated PET. The irradiated samples at 0.3 W have the lowest contact angle which is a clear indication that surface treatment with Nd:YAG laser brought about improving the wettability of the polymer. From the dielectric measurements, both values of permittivity and dielectric loss decrease by increasing the laser power. The electrical conductivity decreases with increasing laser power, but still in the same order 10-14 S/cm. The decrease in electrical conductivity σ may be due to the cross-linking of the polymeric matrix which led to a decrease in the total polarity and consequently decrease in electrical conductivity. The magnitude of σ obtained is highly recommended to be used for insulator purposes in addition to the main purpose that is blood contact.

2.
Prog Biomater ; 9(3): 97-106, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32566967

ABSTRACT

New blend films based on polyethylene terephthalate (PET) with different concentrations (50, 100 and 200 µL) of chamomile oil (CAO) were prepared. The effect of oil on the dielectric properties, structural and surface properties of PET was studied. The wettability of the blend films was evaluated by contact angle measurements. In vitro platelet adhesion on the surface and coagulation assessment were conducted to evaluate the behavior of the new blends for blood contact applications. Results of the study indicate that the wettability of PET-CAO blends up to 100 µL has been enhanced relative to the pure PET as indicated by the decrease in contact angle measurements. The attenuation total reflection-Fourier transform infrared spectra of the blends confirmed the presence of chamomile oil in the polymer matrix and suggested the presence of interaction between them. The permittivity ε' values decreased by increasing oil content upto 100 µL. On the other hand, the values of dielectric loss ε″ were found to increase by increasing oil content to 100 µL after which it decreased. The delay in partial thromboplastin time (PTT) of the blood would validate the anti-coagulant property of PET-CAO blends. The results demonstrated that the PET-CAO blends with concentration of 100 µL could be considered as a promising candidate material in blood contact application.

SELECTION OF CITATIONS
SEARCH DETAIL
...