Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Biochimie ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857695

ABSTRACT

Uropathogenic strains of E. coli (UPEC) is a leading cause of sepsis, deploying multiple virulence factors to evade host immune responses. Notably, alpha-hemolysin (HlyA) produced by UPEC is implicated in septic symptoms associated with bacteremia, correlating with thrombocytopenia, a critical indicator of organ dysfunction and a predictor of poorer patient prognosis. This study meticulously explores the impact of sublytic concentrations of HlyA on platelets. Findings reveal that HlyA triggers an increase in intracellular calcium, activating calpain and exposing phosphatidylserine to the cell surface, as validated by flow cytometric experiments. Electron microscopy reveals a distinctive balloon-like shape in HlyA-treated platelets, indicative of a procoagulant state. The toxin induces the release of procoagulant extracellular vesicles and the secretion of alpha and dense granules. Overall, the results point to HlyA inducing a necrotic-like procoagulant state in platelets. The effects of sublytic concentrations of HlyA on both erythrocytes and platelets could have a potential impact on capillary microcirculation. Targeting HlyA emerges as a viable therapeutic strategy to mitigate the adverse effects of UPEC infections, especially in South American countries where these infections are endemic, underscoring its significance as a potential therapeutic target.

2.
Biochim Biophys Acta Biomembr ; 1864(10): 183980, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35654147

ABSTRACT

Plasmodium falciparum, a dangerous parasitic agent causing malaria, invades human red blood cells (RBCs), causing hemolysis and microvascular obstruction. These and other pathological processes of malaria patients are due to metabolic and structural changes occurring in uninfected RBCs. In addition, infection activates the production of microparticles (MPs). ATP and byproducts are important extracellular ligands modulating purinergic signaling within the intravascular space. Here, we analyzed the contribution of uninfected RBCs and MPs to the regulation of extracellular ATP (eATP) of RBCs, which depends on the balance between ATP release by specific transporters and eATP hydrolysis by ectonucleotidases. RBCs were cultured with P. falciparum for 24-48 h prior to experiments, from which uninfected RBCs and MPs were purified. On-line luminometry was used to quantify the kinetics of ATP release. Luminometry, colorimetry and radioactive methods were used to assess the rate of eATP hydrolysis by ectonucleotidases. Rates of ATP release and eATP hydrolysis were also evaluated in MPs. Uninfected RBCs challenged by different stimuli displayed a strong and transient activation of ATP release, together with an elevated rate of eATP hydrolysis. MPs contained ATP in their lumen, which was released upon vesicle rupture, and were able to hydrolyze eATP. Results suggest that uninfected RBCs and MPs can act as important determinants of eATP regulation of RBCs during malaria. The comparison of eATP homeostasis in infected RBCs, ui-RBCs, and MPs allowed us to speculate on the impact of P. falciparum infection on intravascular purinergic signaling and the control of the vascular caliber by RBCs.


Subject(s)
Malaria , Plasmodium falciparum , Adenosine Triphosphate/metabolism , Erythrocytes/metabolism , Homeostasis , Humans , Malaria/metabolism , Plasmodium falciparum/metabolism
3.
Haematologica ; 107(1): 167-177, 2022 01 01.
Article in English | MEDLINE | ID: mdl-33406813

ABSTRACT

Erythroblast maturation in mammals is dependent on organelle clearance throughout terminal erythropoiesis. We studied the role of the outer mitochondrial membrane protein voltage-dependent anion channel-1 (VDAC1) in human terminal erythropoiesis. We show that short hairpin (shRNA)-mediated downregulation of VDAC1 accelerates erythroblast maturation. Thereafter, erythroblasts are blocked at the orthochromatic stage, exhibiting a significant decreased level of enucleation, concomitant with an increased cell death. We demonstrate that mitochondria clearance starts at the transition from basophilic to polychromatic erythroblast, and that VDAC1 downregulation induces the mitochondrial retention. In damaged mitochondria from non-erythroid cells, VDAC1 was identified as a target for Parkin-mediated ubiquitination to recruit the phagophore. Here, we showed that VDAC1 is involved in phagophore's membrane recruitment regulating selective mitophagy of still functional mitochondria from human erythroblasts. These findings demonstrate for the first time a crucial role for VDAC1 in human erythroblast terminal differentiation, regulating mitochondria clearance.


Subject(s)
Mitochondria , Mitophagy , Animals , Apoptosis , Cell Differentiation , Erythroblasts/metabolism , Erythropoiesis , Humans , Mammals , Mitochondria/metabolism , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
6.
Front Physiol ; 12: 791691, 2021.
Article in English | MEDLINE | ID: mdl-35222062

ABSTRACT

Throughout mammal erythroid differentiation, erythroblasts undergo enucleation and organelle clearance becoming mature red blood cell. Organelles are cleared by autophagic pathways non-specifically targeting organelles and cytosolic content or by specific mitophagy targeting mitochondria. Mitochondrial functions are essential to coordinate metabolism reprogramming, cell death, and differentiation balance, and also synthesis of heme, the prosthetic group needed in hemoglobin assembly. In mammals, mitochondria subcellular localization and mitochondria interaction with other structures as endoplasmic reticulum and nucleus might be of importance for the removal of the nucleus, that is, the enucleation. Here, we aim to characterize by electron microscopy the changes in ultrastructure of cells over successive stages of human erythroblast differentiation. We focus on mitochondria to gain insights into intracellular localization, ultrastructure, and contact with other organelles. We found that mitochondria are progressively cleared with a significant switch between PolyE and OrthoE stages, acquiring a rounded shape and losing contact sites with both ER (MAM) and nucleus (NAM). We studied intracellular vesicle trafficking and found that endosomes and MVBs, known to be involved in iron traffic and heme synthesis, are increased during BasoE to PolyE transition; autophagic structures such as autophagosomes increase from ProE to OrthoE stages. Finally, consistent with metabolic switch, glycogen accumulation was observed in OrthoE stage.

7.
Cell Rep ; 33(12): 108536, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33357422

ABSTRACT

VAMP7 is involved in autophagy and in exocytosis-mediated neurite growth, two yet unconnected cellular pathways. Here, we find that nutrient restriction and activation of autophagy stimulate axonal growth, while autophagy inhibition leads to loss of neuronal polarity. VAMP7 knockout (KO) neuronal cells show impaired neurite growth, whereas this process is increased in autophagy-null ATG5 KO cells. We find that endoplasmic reticulum (ER)-phagy-related LC3-interacting-region-containing proteins Atlastin 3 and Reticulon 3 (RTN3) are more abundant in autophagy-related protein ATG5 KO and less abundant in VAMP7 KO secretomes. Treatment of neuronal cells with ATG5 or VAMP7 KO conditioned medium does not recapitulate the effect of these KOs on neurite growth. A nanobody directed against VAMP7 inhibits axonal overgrowth induced by nutrient restriction. Furthermore, expression of the inhibitory Longin domain of VAMP7 impairs the subcellular localization of RTN3 in neurons. We propose that VAMP7-dependent secretion of RTN3 regulates neurite growth.


Subject(s)
Carrier Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurites/metabolism , R-SNARE Proteins/metabolism , Autophagy/physiology , Endoplasmic Reticulum/metabolism , Gene Knockout Techniques , Humans
8.
Front Cell Neurosci ; 13: 279, 2019.
Article in English | MEDLINE | ID: mdl-31297049

ABSTRACT

Hypoxia is one of the main insults in proliferative retinopathies, leading to neovascularization and neurodegeneration. To maintain homeostasis, neurons require efficient degradation and recycling systems. Autophagy participates in retinal cell death, but it is also a cell survival mechanism. Here, we analyzed the role of autophagy at the three characteristic time periods in the oxygen-induced retinopathy (OIR) mouse model and determined if its modulation can improve vascular and non-vascular alterations. Experiments were performed with chloroquine (CQ) in order to monitor autophagosome accumulation by lysosomal blockade. Post natal day (P)17 OIR mouse retinas showed a significant increase in autophagy flux. In particular, an intense LC3B and p62 staining was observed in inner layers of the retina, mainly proliferating endothelial cells. After a single intraocular injection of Rapamycin at P12 OIR, a decreased neovascular area and vascular endothelial growth factor (VEGF) protein expression were observed at P17 OIR. In addition, whereas the increased expression of glial fibrillary acidic protein (GFAP) was reversed at P26 OIR, the functional alterations persisted. Using a similar therapeutic schedule, we analyzed the effect of anti-VEGF therapy on autophagy flux. Like Rapamycin, VEGF inhibitor treatment not only reduced the amount of neovascular tufts, but also activated autophagy flux at P17 OIR, mainly in ganglion cell layer and inner nuclear layer. Finally, the effects of the disruption of autophagy by Spautin-1, were evaluated at vascular, glial, and neuronal levels. After a single dose of Spautin-1, Western blot analysis showed a significant decrease in LC3B II and p62 protein expression at P13 OIR, returning both autophagy markers to OIR control levels at P17. In addition, neither gliosis nor functional alterations were attenuated. In line with these results, TUNEL staining showed a slight increase in the number of positive cells in the outer nuclear layer at P17 OIR. Overall, our results demonstrate that all treatments of induction or inhibition of the autophagic flux reduced neovascular area but were unable to completely reverse the neuronal damage. Besides, compared to current treatments, rapamycin provides a more promising therapeutic strategy as it reduces both neovascular tufts and persistent gliosis.

9.
Biosci Rep ; 39(1)2019 01 31.
Article in English | MEDLINE | ID: mdl-30523204

ABSTRACT

Hemin is an erythropoietic inductor capable of inducing autophagy in erythroid-like cell lines. Low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane receptor involved in a wide range of cellular processes, such as proliferation, differentiation, and metabolism. Our aim was to evaluate whether LRP1 is responsible for hemin activity in K562 cells, with the results demonstrating a three-fold increase in LRP1 gene expression levels (P-values <0.001) when assessed by quantitative real-time RT-PCR (qRT-PCR). Moreover, a 70% higher protein amount was observed compared with control condition (P-values <0.01) by Western blot (WB). Time kinetic assays demonstrated a peak in light chain 3 (LC3) II (LC3II) levels after 8 h of hemin stimulation and the localization of LRP1 in the autophagosome structures. Silencing LRP1 by siRNA decreased drastically the hemin-induced autophagy activity by almost 80% compared with control cells (P-values <0.01). Confocal localization and biochemical analysis indicated a significant redistribution of LRP1 from early endosomes and recycling compartments to late endosomes and autophagolysosomes, where the receptor is degraded. We conclude that LRP1 is responsible for hemin-induced autophagy activity in the erythroblastic cell line and that hemin-LRP1 complex activation promotes a self-regulation of the receptor. Our results suggest that hemin, via the LRP1 receptor, favors erythroid maturation by inducing an autophagic response, making it a possible therapeutic candidate to help in the treatment of hematological disorders.


Subject(s)
Autophagosomes/drug effects , Autophagy/drug effects , Gene Expression Regulation, Leukemic , Hemin/pharmacology , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Autophagosomes/metabolism , Autophagy/genetics , HeLa Cells , Humans , K562 Cells , Low Density Lipoprotein Receptor-Related Protein-1/antagonists & inhibitors , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Transport/drug effects , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction
10.
Biochem J ; 475(9): 1669-1685, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29669912

ABSTRACT

Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) is expressed in retinal Müller glial cells (MGCs) and regulates intracellular translocation to the plasma membrane (PM) of the membrane proteins involved in cellular motility and activity. Different functions of MGCs may be influenced by insulin, including the removal of extracellular glutamate in the retina. In the present work, we investigated whether insulin promotes LRP1 translocation to the PM in the Müller glial-derived cell line MIO-M1 (human retinal Müller glial cell-derived cell line). We demonstrated that LRP1 is stored in small vesicles containing an approximate size of 100 nm (mean diameter range of 100-120 nm), which were positive for sortilin and VAMP2, and also incorporated GLUT4 when it was transiently transfected. Next, we observed that LRP1 translocation to the PM was promoted by insulin-regulated exocytosis through intracellular activation of the IR/PI3K/Akt axis and Rab-GTPase proteins such as Rab8A and Rab10. In addition, these Rab-GTPases regulated both the constitutive and insulin-induced LRP1 translocation to the PM. Finally, we found that dominant-negative Rab8A and Rab10 mutants impaired insulin-induced intracellular signaling of the IR/PI3K/Akt axis, suggesting that these GTPase proteins as well as the LRP1 level at the cell surface are involved in insulin-induced IR activation.


Subject(s)
Cell Membrane/metabolism , Ependymoglial Cells/metabolism , Exocytosis/drug effects , Gene Expression Regulation , Insulin/pharmacology , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Cells, Cultured , Ependymoglial Cells/drug effects , Glucose Transporter Type 4/metabolism , Humans , Hypoglycemic Agents/pharmacology , Protein Transport , Signal Transduction , rab GTP-Binding Proteins/metabolism
11.
Article in English | MEDLINE | ID: mdl-30687233

ABSTRACT

Autophagy is a major protein turnover pathway by which cellular components are delivered into the lysosomes for degradation and recycling. This intracellular process is able to maintain cellular homeostasis under stress conditions, and its dysregulation could lead to the development of physiological alterations. The autophagic activity has been found to decrease with age, likely contributing to the accumulation of damaged macromolecules and organelles during aging. Interestingly, failure of the autophagic process has been reported to worsen aging-associated diseases, such as neurodegeneration or cancer, among others. Likewise, it has been proposed in different organisms that maintenance of a proper autophagic activity contributes to extending longevity. In this review, we discuss recent papers showing the impact of autophagy on cell activity and age-associated diseases, highlighting the relevance of this process to the hallmarks of aging. Thus, understanding how autophagy plays an important role in aging opens new avenues for the discovery of biochemical and pharmacological targets and the development of novel anti-aging therapeutic approaches.

12.
Blood Rev ; 31(5): 300-305, 2017 09.
Article in English | MEDLINE | ID: mdl-28483400

ABSTRACT

Autophagy is a well-known cellular process involved in many physiological and pathological processes. During erythropoiesis, autophagy plays an important role participating in the clearance of unnecessary organelles such as ribosomes and mitochondria (mitophagy) allowing the correct formation of mature red blood cells. The dysfunction of autophagy proteins hamper the correct erythroid maturation, leading to anemia, the release of immature cells from the bone marrow and other hematological abnormalities. Autophagy plays different roles depending on the type of pathology. In leukemia cells, it has been demonstrated that autophagy could be either detrimental, leading to an increase of the apoptosis rate, or protective, acting as a key process that augments proliferation and survival of cancer cells. Thus, understanding the relationship between autophagy and erythropoiesis opens new avenues for the discovery of biochemical and pharmacological targets and for the development of novel therapeutic approaches.


Subject(s)
Autophagy , Erythropoiesis , Animals , Cell Differentiation , Disease Susceptibility , Erythrocytes/cytology , Erythrocytes/metabolism , Hematologic Diseases/etiology , Hematologic Diseases/metabolism , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
13.
PLoS One ; 12(5): e0178306, 2017.
Article in English | MEDLINE | ID: mdl-28542562

ABSTRACT

Extracellular vesicles (EVs) have been identified within different body fluids and cell culture media. However, there is very little information on the secretion of these vesicles during early embryonic development. The aims of this work were first to demonstrate the secretion of extracellular vesicles by pre-implantation bovine embryos and second to identify and characterize the population of EVs secreted by bovine blastocysts during the period from day seven to nine of embryo culture and its correlation with further embryo development up to day 11. Bovine embryos were produced by in vitro fertilization (IVF) or parthenogenetic activation (PA) and cultured until blastocyst stage. Blastocyst selection was performed at day 7 post IVF/PA considering two variables: stage of development and quality of embryos. Selected blastocysts were cultured in vitro for 48 hours in groups (exp. 1) or individually (exp. 2) in SOF media depleted of exosomes. At day 9 post IVF/PA the media was collected and EVs isolated by ultracentrifugation. Transmission electron microscopy revealed the presence of heterogeneous vesicles of different sizes and population: microvesicles (MVs) and exosomes (EXs) of rounded shape, enclosed by a lipid bi-layer and ranging from 30 to 385 nm of diameter. Flow cytometry analysis allowed identifying CD63 and CD9 proteins as exosome markers. Nanoparticle tracking analysis generated a large number of variables, which required the use of multivariate statistics. The results indicated that the concentration of vesicles is higher in those blastocysts with arrested development from day 9 up to day 11 of in vitro development (6.7 x 108 particles/ml) derived from IVF (p <0.05), compared to PA blastocysts (4.7 x 108 particles/ml). Likewise, the profile (concentration and diameter) of particles secreted by embryos derived from IVF were different from those secreted by PA embryos. In conclusion, we demonstrated that bovine blastocysts secrete MVs/EXs to the culture media. Data suggest that characteristics of the population of EVs vary depending on embryo competence.


Subject(s)
Blastocyst/physiology , Extracellular Vesicles/physiology , Animals , Cattle , Culture Media , Embryo Culture Techniques/methods , Extracellular Vesicles/ultrastructure , In Vitro Techniques , Microscopy, Electron, Transmission , Nanoparticles/metabolism
14.
Biol Cell ; 108(4): 77-95, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26773440

ABSTRACT

BACKGROUND INFORMATION: In eukaryotic cells, autophagy is considered a lysosomal catabolic process which participates in the degradation of intracellular components in a vacuolar structure termed autolysosome. This pathway plays a significant role in the erythropoiesis process, contributing to the clearance of some organelles (such as mitochondria) that are not necessary in the mature red blood cells. Nevertheless, the role of autophagy in erythrocyte maturation has not been fully established. RESULTS: Here, we have demonstrated that hemin (a physiological erythroid maturation stimulator) is able to induce the expression of critical autophagic genes (i.e., Map1a1b (LC3), Beclin-1 gen, Atg5) in an erythroleukemia cell type. We have also shown that hemin increased the size of autophagic vacuoles which were labelled with LC3 and the degradative lysosomal marker dye quenched-bovine serum albumin. In addition, we have determined by Western blot a rise in the lipidated form of the autophagic protein LC3 (i.e., LC3-II) upon hemin treatment. Moreover, we provide evidence that hemin induces mitochondrial membrane depolarisation and that mitochondria sequestration by autophagy requires the active form of the NIX protein. CONCLUSIONS: We have found that the physiological erythroid maturation stimulator hemin is able to induce mitophagy in K562 cells, and that the autophagy adaptor NIX is necessary for mitophagy progression. K562 cells have been used as a relevant model to determine the possible therapeutic role of new differentiating compounds. SIGNIFICANCE: It has been proposed that autophagy induction is a feasible new therapeutic key in fighting cancer. Our results suggest that hemin is favoring erythroid maturation by inducing an autophagic response in K562 cells, being a possible therapeutic candidate that may help in the chronic myelogenous leukemia (CML) treatment.


Subject(s)
Hemin/metabolism , Leukemia, Erythroblastic, Acute/metabolism , Mitophagy , Gene Expression Regulation, Leukemic , Humans , K562 Cells , Leukemia, Erythroblastic, Acute/genetics , Leukemia, Erythroblastic, Acute/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
15.
FEBS Lett ; 589(22): 3343-53, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26450776

ABSTRACT

Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.


Subject(s)
Autophagy , Intracellular Space/metabolism , Proteins/metabolism , Animals , Biological Transport , Humans , SNARE Proteins/metabolism , rab GTP-Binding Proteins/metabolism
16.
Amino Acids ; 47(10): 2101-12, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25234192

ABSTRACT

Macroautophagy is a self-degradative process that normally maintains cellular homeostasis via a lysosomal pathway. It is induced by different stress signals, including nutrients and growth factors' restriction as well as pathogen invasions. These stimuli are modulated by the serine/threonine protein kinase mammalian target of rapamycin (mTOR) which control not only autophagy but also protein translation and gene expression. This review focuses on the important role of mTOR as a master regulator of cell growth and the autophagy pathway. Here, we have discussed the role of intracellular amino acid availability and intracellular pH in the redistribution of autophagic structures, which may contribute to mammalian target of rapamycin complex 1 (mTORC1) activity regulation. We have also discussed that mTORC1 complex and components of the autophagy machinery are localized at the lysosomal surface, representing a fascinating mechanism to control the metabolism, cellular clearance and also to restrain invading intracellular pathogens.


Subject(s)
Amino Acids/metabolism , Autophagy , Communicable Diseases/etiology , Host-Pathogen Interactions , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Humans
17.
Autophagy ; 8(12): 1741-56, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22951367

ABSTRACT

Autophagy is a normal degradative pathway that involves the sequestration of cytoplasmic components and organelles in a vacuole called autophagosome. SNAREs proteins are key molecules of the vesicle fusion machinery. Our results indicate that in a mammalian tumor cell line a subset of VAMP7 (V-SNARE)-positive vacuoles colocalize with LC3 at the cell periphery (focal adhesions) upon starvation. The re-distribution of VAMP7 positive structures is a microtubule-dependent event, with the participation of the motor protein KIF5 and the RAB7 effector RILP. Interestingly, most of the VAMP7-labeled vesicles were loaded with ATP. Moreover, in cells subjected to starvation, these structures fuse with the plasma membrane to release the nucleotide to the extracellular medium. Summarizing, our results show the molecular components involved in the release of ATP to extracellular space, which is recognized as an important autocrine/paracrine signal molecule that participates in the regulation of several cellular functions such as immunogenicity of cancer cell death or inflammation.


Subject(s)
Adenosine Triphosphate/metabolism , Autophagy , Cytoplasmic Vesicles/metabolism , Extracellular Space/metabolism , R-SNARE Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Autophagy-Related Protein 5 , Beclin-1 , Biomarkers/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Focal Adhesions/drug effects , Focal Adhesions/metabolism , HeLa Cells , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Membrane Proteins/metabolism , Microscopy, Fluorescence , Microtubule-Associated Proteins/metabolism , Microtubules/drug effects , Microtubules/metabolism , Phagosomes/drug effects , Phagosomes/metabolism , Protein Transport/drug effects , Vinblastine/pharmacology
18.
Autophagy ; 6(1): 110-25, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20110774

ABSTRACT

Staphylococcus aureus is a pathogen that causes serious infectious diseases eventually leading to septic and toxic shock. Classically S. aureus has been considered an extracellular pathogen, but cumulative evidence indicates that it invades cells and replicates intracellularly leading to staphylococcal persistence and chronic disease. It has been previously shown that this pathogen localizes to LC3-labeled compartments and subverts the autophagy pathway. One of the key features of S. aureus infection is the production of a series of virulence factors, including secreted enzymes and toxins. In the present report we present evidence that the pore-forming toxin alpha-hemolysin (Hla) is a S. aureus secreted factor which participates in the activation of the autophagic pathway. In addition, our results indicate that although the toxin elicits an autophagic response this pathway is dysfunctional as indicated by the accumulation of the LC3-II form in cell lysates obtained from intoxicated cells. In addition, not only the purified Hla toxin but also the toxin-secreting pathogen prevented the maturation of autophagosomes. Interestingly, in cells infected with the wild-type strain of S. aureus the bacteria-containing compartments which recruited LC3 onto the limiting membrane did not accumulate the acidotropic probe LysoTracker. In contrast, those phagosomes containing the Hla(-) mutant (unable to produce the toxin) localized in an acidic compartment unlabeled by LC3. These results suggest that the LC3 protein is recruited only to those damaged vacuoles (i.e., perforated by the toxin), perhaps as an attempt to protect the cells. Furthermore, we have demonstrated that the toxin-dependent activation of autophagy (although it is regulated by calcium and requires Atg5) is independent of both PI3Kinase activity and Beclin 1 suggesting the involvement of a non-canonical autophagy pathway.


Subject(s)
Autophagy/genetics , Hemolysin Proteins/physiology , Staphylococcal Infections/physiopathology , Staphylococcus aureus/pathogenicity , Animals , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/physiology , Autophagy/physiology , Bacterial Toxins/genetics , Beclin-1 , CHO Cells , Cricetinae , Cricetulus , HeLa Cells , Hemolysin Proteins/genetics , Humans , Membrane Proteins/metabolism , Membrane Proteins/physiology , Microtubule-Associated Proteins/metabolism , Organisms, Genetically Modified , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/genetics , Transfection , Up-Regulation/genetics , Up-Regulation/physiology
19.
Biochim Biophys Acta ; 1793(12): 1901-16, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19781582

ABSTRACT

During reticulocyte maturation, some membrane proteins and organelles that are not required in the mature red cell are lost. Several of these proteins are released into the extracellular medium associated with the internal vesicles present in multivesicular bodies (MVBs). Likewise, organelles such as mitochondria and endoplasmic reticulum are wrapped into double membrane vacuoles (i.e., autophagosomes) and degraded via autophagy. Morphological, molecular, and biochemical studies have shown that autophagosomes fuse with MVBs forming the so-called amphisomes, a prelysosomal hybrid organelle. SNAREs are key molecules of the vesicle fusion machinery. TI-VAMP/VAMP7 and VAMP3/cellubrevin are two v-SNARE proteins involved in the endocytic and exocytic pathways. We have previously shown that in the human leukemic K562 cells, Rab11 decorates MVBs and it is necessary for fusion between autophagosomes with MVBs. In the present report, we present evidence indicating that VAMP3 is required for the fusion between MVBs with autophagosomes to generate the amphisome, allowing the maturation of the autophagosome, but it does not seem to be involved in the next step, i. e., fusion with the lysosome. On the other hand, we demonstrate that VAMP7 is necessary for this latter event, allowing the completion of the autophagic pathway. Furthermore, VAMP7 and ATPase NSF, a protein required for SNAREs disassembly, participate in the fusion between MVBs with the plasma membrane to release the internal vesicles (i.e., exosomes) into the extracellular medium.


Subject(s)
Autophagy/physiology , Lysosomes/metabolism , Membrane Fusion/physiology , Multivesicular Bodies/metabolism , R-SNARE Proteins/metabolism , Vesicle-Associated Membrane Protein 3/metabolism , Endocytosis/physiology , Exocytosis/physiology , Humans , K562 Cells , N-Ethylmaleimide-Sensitive Proteins/metabolism , rab GTP-Binding Proteins/metabolism
20.
Traffic ; 9(2): 230-50, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17999726

ABSTRACT

Morphological and biochemical studies have shown that autophagosomes fuse with endosomes forming the so-called amphisomes, a prelysosomal hybrid organelle. In the present report, we have analyzed this process in K562 cells, an erythroleukemic cell line that generates multivesicular bodies (MVBs) and releases the internal vesicles known as exosomes into the extracellular medium. We have previously shown that in K562 cells, Rab11 decorates MVBs. Therefore, to study at the molecular level the interaction of MVBs with the autophagic pathway, we have examined by confocal microscopy the fate of MVBs in cells overexpressing green fluorescent protein (GFP)-Rab11 and the autophagosomal protein red fluorescent protein-light chain 3 (LC3). Autophagy inducers such as starvation or rapamycin caused an enlargement of the vacuoles decorated with GFP-Rab11 and a remarkable colocalization with LC3. This convergence was abrogated by a Rab11 dominant negative mutant, indicating that a functional Rab11 is involved in the interaction between MVBs and the autophagic pathway. Interestingly, we presented evidence that autophagy induction caused calcium accumulation in autophagic compartments. Furthermore, the convergence between the endosomal and the autophagic pathways was attenuated by the Ca2+ chelator acetoxymethyl ester (AM) of the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), indicating that fusion of MVBs with the autophagosome compartment is a calcium-dependent event. In addition, autophagy induction or overexpression of LC3 inhibited exosome release, suggesting that under conditions that stimulates autophagy, MVBs are directed to the autophagic pathway with consequent inhibition in exosome release.


Subject(s)
Autophagy/physiology , Cytoplasmic Vesicles/physiology , Membrane Fusion/physiology , Amino Acids/deficiency , Autophagy/drug effects , Autophagy-Related Protein 12 , Cadaverine/analogs & derivatives , Cadaverine/metabolism , Calcium/metabolism , Chelating Agents/pharmacology , Culture Media, Serum-Free/pharmacology , Cytoplasmic Vesicles/drug effects , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Exocytosis/drug effects , Exocytosis/physiology , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , Humans , K562 Cells , Membrane Fusion/drug effects , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Biological , Monensin/pharmacology , Nocodazole/pharmacology , Proteins/genetics , Proteins/metabolism , RNA, Small Interfering/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sirolimus/pharmacology , Small Ubiquitin-Related Modifier Proteins , Transfection , Vinblastine/pharmacology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...