Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Gene Med ; 25(9): e3532, 2023 09.
Article in English | MEDLINE | ID: mdl-37209019

ABSTRACT

BACKGROUND: COVID-19 is a novel infectious disease for which no specific treatment exists. It is likely that a combination of genetic and non-genetic factors predispose to it. Expression levels of genes that are involved in the interaction with SARS-CoV-2 or the host response are thought to play a role in disease susceptibility and severity. It is crucial to explore biomarkers for disease severity and outcome. Herein, we studied the expression levels and effects of long non-coding metastasis-associated lung adenocarcinoma transcript 1 (lnc-MALAT1) and long non-coding maternally expressed gene 3 (lnc-MEG3) in COVID-19 patients. The study enrolled 35 hospitalized and 35 non-hospitalized COVID-19 patients, and 35 healthy controls. A chest computed tomography (CT) scan, complete blood count (CBC), ferritin, C-reactive protein (CRP), D-dimer and analysis of lnc-MALAT1 and lnc-MEG3 expression were done. RESULTS: There was a significant relation between ferritin, CRP, D-dimer levels, oxygen saturation, CT-CORADS score and disease severity. Lnc-MALAT1 was significantly higher but lnc-MEG3 was significantly lower in patients vs. controls, and in hospitalized vs. non-hospitalized patients. Elevated MALAT1 and reduced MEG3 levels were significantly associated with more elevated ferritin, CRP, D-dimer levels, lower oxygen saturation, higher CT-CORADS score and poor survival. Moreover, MALAT1 and MEG3 levels displayed higher sensitivity and specificity as predictors of COVID-19 severity compared with other prognostic biochemical markers such as ferritin, CRP, and D-dimer. CONCLUSIONS: MALAT1 levels are higher, whereas MEG3 levels are lower in COVID-19 patients. Both are linked to disease severity and mortality and could emerge as predictive biomarkers for COVID-19 severity and therapeutic targets.


Subject(s)
COVID-19 , RNA, Long Noncoding , Humans , COVID-19/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Biomarkers , Ferritins
SELECTION OF CITATIONS
SEARCH DETAIL
...