Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 16407, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30401885

ABSTRACT

High resolution X-ray imaging is crucial for many high energy density physics (HEDP) experiments. Recently developed techniques to improve resolution have, however, come at the cost of a decreased field of view. In this paper, an innovative experimental detector for X-ray imaging in the context of HEDP experiments with high spatial resolution, as well as a large field of view, is presented. The platform is based on coupling an X-ray backligther source with a Lithium Fluoride detector, characterized by its large dynamic range. A spatial resolution of 2 µm over a field of view greater than 2 mm2 is reported. The platform was benchmarked with both an X-ray free electron laser (XFEL) and an X-ray source produced by a short pulse laser. First, using a non-coherent short pulse laser-produced backlighter, reduced penumbra blurring, as a result of the large size of the X-ray source, is shown. Secondly, we demonstrate phase contrast imaging with a fully coherent monochromatic XFEL beam. Modeling of the absorption and phase contrast transmission of X-ray radiation passing through various targets is presented.

2.
Phys Rev Lett ; 106(13): 134801, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21517389

ABSTRACT

We report on the first generation of 5.5-7.5 MeV protons by a moderate-intensity short-pulse laser (∼5×10(17) W/cm(2), 40 fsec) interacting with frozen H(2)O nanometer-size structure droplets (snow nanowires) deposited on a sapphire substrate. In this setup, the laser intensity is locally enhanced by the snow nanowire, leading to high spatial gradients. Accordingly, the nanoplasma is subject to enhanced ponderomotive potential, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced over the short scale length, and protons are accelerated to MeV-level energies.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 2): 046412, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12443335

ABSTRACT

Strong L-shell x-ray emission has been obtained from Kr clusters formed in gas jets and irradiated by 60-500-fs laser pulses. Spectral lines from the F-, Ne- Na-, and Mg-like charge states of Kr have been identified from highly resolved x-ray spectra. Spectral line intensities are used in conjunction with a detailed time-dependent collisional-radiative model to diagnose the electron distribution functions of plasmas formed in various gas jet nozzles with various laser pulse durations. It is shown that L-shell spectra formed by relatively long nanosecond-laser pulses can be well described by a steady-state model without hot electrons when opacity effects are included. In contrast, adequate modeling of L-shell spectra from highly transient and inhomogeneous femtosecond-laser plasmas requires including the influence of hot electrons. It is shown that femtosecond-laser interaction with gas jets from conical nozzles produces plasmas with higher ionization balances than plasmas formed by gas jets from Laval nozzles, in agreement with previous work for femtosecond laser interaction with Ar clusters.

4.
Article in English | MEDLINE | ID: mdl-11970139

ABSTRACT

We have observed evidence of the emission of energetic He-and H-like ions of fluorine more than 1 MeV produced via the optical field ionization (OFI) from a solid target irradiated by an intense I=(2-4)x10(18) W/cm(2) (60 fs, lambda=800 nm), obliquely incident p-polarized pulse laser. The measured blue wing of He(alpha), He(beta), and Ly(alpha) lines of fluorine shows a feature of the Doppler-shifted spectrum due to the self-similar ion expansion dominated by superthermal electrons with the temperature T(h) approximately 100 keV. Using a collisional particle-in-cell simulation, which incorporates the nonlocal-thermodynamic-equilibrium ionization including OFI, we have obtained the plasma temperature, line shape, and maximal energy of accelerated ions, which agree well with those determined from the experimental spectra. The red wing of ion spectra gives the temperature of bulk plasma electrons.

SELECTION OF CITATIONS
SEARCH DETAIL
...