Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 5(2): e1073882, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27057438

ABSTRACT

In experimental mouse models of cancer, increasingly compelling evidence point toward a contribution of tumor associated macrophages (TAM) to tumor lymphangiogenesis. Corresponding experimental observations in human cancer remain scarce although lymphatic metastasis is widely recognized as a predominant route for tumor spread. We previously showed that, in malignant tumors of untreated breast cancer (BC) patients, TIE-2-expressing monocytes (TEM) are highly proangiogenic immunosuppressive cells and that TIE-2 and VEGFR signaling pathways drive TEM immunosuppressive function. We report here that, in human BC, TEM express the canonical lymphatic markers LYVE-1, Podoplanin, VEGFR-3 and PROX-1. Critically, both TEM acquisition of lymphatic markers and insertion into lymphatic vessels were observed in tumors but not in adjacent non-neoplastic tissues, suggesting that the tumor microenvironment shapes both TEM phenotype and spatial distribution. We assessed the lymphangiogenic activity of TEM isolated from dissociated primary breast tumors in vitro and in vivo using endothelial cells (EC) sprouting assay and corneal vascularization assay, respectively. We show that, in addition to their known hemangiogenic function, TEM isolated from breast tumor display a lymphangiogenic activity. Importantly, TIE-2 and VEGFR pathways display variable contributions to TEM angiogenic and lymphangiogenic activities across BC patients; however, combination of TIE-2 and VEGFR kinase inhibitors abrogated these activities and overcame inter-patient variability. These results highlight the direct contribution of tumor TEM to the breast tumor lymphatic network and suggest a combined use of TIE-2 and VEGFR kinase inhibitors as a therapeutic approach to block hem- and lymphangiogenesis in BC.

2.
PLoS Comput Biol ; 11(3): e1004050, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25768678

ABSTRACT

Angiogenesis plays a key role in tumor growth and cancer progression. TIE-2-expressing monocytes (TEM) have been reported to critically account for tumor vascularization and growth in mouse tumor experimental models, but the molecular basis of their pro-angiogenic activity are largely unknown. Moreover, differences in the pro-angiogenic activity between blood circulating and tumor infiltrated TEM in human patients has not been established to date, hindering the identification of specific targets for therapeutic intervention. In this work, we investigated these differences and the phenotypic reversal of breast tumor pro-angiogenic TEM to a weak pro-angiogenic phenotype by combining Boolean modelling and experimental approaches. Firstly, we show that in breast cancer patients the pro-angiogenic activity of TEM increased drastically from blood to tumor, suggesting that the tumor microenvironment shapes the highly pro-angiogenic phenotype of TEM. Secondly, we predicted in silico all minimal perturbations transitioning the highly pro-angiogenic phenotype of tumor TEM to the weak pro-angiogenic phenotype of blood TEM and vice versa. In silico predicted perturbations were validated experimentally using patient TEM. In addition, gene expression profiling of TEM transitioned to a weak pro-angiogenic phenotype confirmed that TEM are plastic cells and can be reverted to immunological potent monocytes. Finally, the relapse-free survival analysis showed a statistically significant difference between patients with tumors with high and low expression values for genes encoding transitioning proteins detected in silico and validated on patient TEM. In conclusion, the inferred TEM regulatory network accurately captured experimental TEM behavior and highlighted crosstalk between specific angiogenic and inflammatory signaling pathways of outstanding importance to control their pro-angiogenic activity. Results showed the successful in vitro reversion of such an activity by perturbation of in silico predicted target genes in tumor derived TEM, and indicated that targeting tumor TEM plasticity may constitute a novel valid therapeutic strategy in breast cancer.


Subject(s)
Breast Neoplasms/physiopathology , Models, Biological , Monocytes/physiology , Neovascularization, Pathologic/physiopathology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Line , Computational Biology , Cytokines/metabolism , Cytokines/physiology , Female , Humans , Kaplan-Meier Estimate , Mice , Mice, Transgenic , Middle Aged , Monocytes/chemistry , Monocytes/classification , Neoplasms, Experimental , Phenotype , Signal Transduction/physiology
3.
Clin Cancer Res ; 19(13): 3439-49, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23649001

ABSTRACT

PURPOSE: Tumor-associated TIE-2-expressing monocytes (TEM) are highly proangiogenic cells critical for tumor vascularization. We previously showed that, in human breast cancer, TIE-2 and VEGFR pathways control proangiogenic activity of TEMs. Here, we examine the contribution of these pathways to immunosuppressive activity of TEMs. EXPERIMENTAL DESIGN: We investigated the changes in immunosuppressive activity of TEMs and gene expression in response to specific kinase inhibitors of TIE-2 and VEGFR. The ability of tumor TEMs to suppress tumor-specific T-cell response mediated by tumor dendritic cells (DC) was measured in vitro. Characterization of TEM and DC phenotype in addition to their interaction with T cells was done using confocal microscopic images analysis of breast carcinomas. RESULTS: TEMs from breast tumors are able to suppress tumor-specific immune responses. Importantly, proangiogenic and suppressive functions of TEMs are similarly driven by TIE-2 and VEGFR kinase activity. Furthermore, we show that tumor TEMs can function as antigen-presenting cells and elicit a weak proliferation of T cells. Blocking TIE-2 and VEGFR kinase activity induced TEMs to change their phenotype into cells with features of myeloid dendritic cells. We show that immunosuppressive activity of TEMs is associated with high CD86 surface expression and extensive engagement of T regulatory cells in breast tumors. TIE-2 and VEGFR kinase activity was also necessary to maintain high CD86 surface expression levels and to convert T cells into regulatory cells. CONCLUSIONS: These results suggest that TEMs are plastic cells that can be reverted from suppressive, proangiogenic cells into cells that are able to mediate an antitumoral immune response.


Subject(s)
Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Monocytes/immunology , Monocytes/metabolism , Receptor, TIE-2/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Angiogenesis Inhibitors/pharmacology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , B7-2 Antigen/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , CD11c Antigen/metabolism , Cluster Analysis , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Gene Expression Profiling , Humans , Immunophenotyping , Lymphocyte Activation/immunology , Monocytes/drug effects , Neovascularization, Pathologic/metabolism , Phenotype , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
4.
Clin Cancer Res ; 18(16): 4365-74, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22711708

ABSTRACT

PURPOSE: Local breast cancer relapse after breast-saving surgery and radiotherapy is associated with increased risk of distant metastasis formation. The mechanisms involved remain largely elusive. We used the well-characterized 4T1 syngeneic, orthotopic breast cancer model to identify novel mechanisms of postradiation metastasis. EXPERIMENTAL DESIGN: 4T1 cells were injected in 20 Gy preirradiated mammary tissue to mimic postradiation relapses, or in nonirradiated mammary tissue, as control, of immunocompetent BALB/c mice. Molecular, biochemical, cellular, histologic analyses, adoptive cell transfer, genetic, and pharmacologic interventions were carried out. RESULTS: Tumors growing in preirradiated mammary tissue had reduced angiogenesis and were more hypoxic, invasive, and metastatic to lung and lymph nodes compared with control tumors. Increased metastasis involved the mobilization of CD11b(+)c-Kit(+)Ly6G(high)Ly6C(low)(Gr1(+)) myeloid cells through the HIF1-dependent expression of Kit ligand (KitL) by hypoxic tumor cells. KitL-mobilized myeloid cells homed to primary tumors and premetastatic lungs, to give rise to CD11b(+)c-Kit(-) cells. Pharmacologic inhibition of HIF1, silencing of KitL expression in tumor cells, and inhibition of c-Kit with an anti-c-Kit-blocking antibody or with a tyrosine kinase inhibitor prevented the mobilization of CD11b(+)c-Kit(+) cells and attenuated metastasis. C-Kit inhibition was also effective in reducing mobilization of CD11b(+)c-Kit(+) cells and inhibiting lung metastasis after irradiation of established tumors. CONCLUSIONS: Our work defines KitL/c-Kit as a previously unidentified axis critically involved in promoting metastasis of 4T1 tumors growing in preirradiated mammary tissue. Pharmacologic inhibition of this axis represents a potential therapeutic strategy to prevent metastasis in breast cancer patients with local relapses after radiotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/drug effects , Stem Cell Factor/metabolism , Animals , Antineoplastic Agents/administration & dosage , CD11b Antigen/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Hypoxia , Hypoxia-Inducible Factor 1/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/radiotherapy , Mice , Mice, Inbred C57BL , Neoplasm Metastasis , Neoplasm Recurrence, Local , Neovascularization, Pathologic/drug therapy , Tumor Burden
5.
Stem Cells Dev ; 16(2): 281-96, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17521239

ABSTRACT

Steady-state hematopoiesis and hematopoietic transplantation rely on the unique potential of stem cells to undergo both self-renewal and multilineage differentiation. Fetal liver (FL) represents a promising alternative source of hematopoietic stem cells (HSCs), but limited by the total cell number obtained in a typical harvest. We reported that human FL nonobese diabetic/severe combined immunodeficient (NOD/SCID) repopulating cells (SRCs) could be expanded under simple stroma-free culture conditions. Here, we sought to further characterize FL HSC/SRCs phenotypically and functionally before and following culture. Unexpanded or cultured FL cell suspensions were separated into various subpopulations. These were tested for long-term culture potential and for in vivo repopulating function following transplantation into NOD/SCID mice. We found that upon culture of human FL cells, a tight association between classical stem cell phenotypes, such as CD34(+) /CD38(-) and/or side population, and NOD/SCID repopulating function was lost, as observed with other sources. Although SRC activity before and following culture consistently correlated with the presence of a CD34(+) cell population, we provide evidence that, contrary to umbilical cord blood and adult sources, stem cells present in both CD34(+) and CD34(-) FL populations can sustain long-term hematopoietic cultures. Furthermore, upon additional culture, CD34-depleted cell suspensions, devoid of SRCs, regenerated a population of CD34(+) cells possessing SRC function. Our studies suggest that compared to neonatal and adult sources, the phenotypical characteristics of putative human FL HSCs may be less strictly defined, and reinforce the accumulated evidence that human FL represents a unique, valuable alternative and highly proliferative source of HSCs for clinical applications.


Subject(s)
Fetus/anatomy & histology , Hematopoietic Stem Cells/physiology , Liver , Adult , Animals , Antigens, CD34/metabolism , Cell Lineage , Cell Transplantation , Cells, Cultured , Hematopoietic Stem Cells/cytology , Humans , Liver/cytology , Liver/embryology , Mice , Mice, Inbred NOD , Mice, SCID , Phenotype
6.
Blood ; 103(3): 1166-70, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-14512297

ABSTRACT

Hematopoietic stem cells (HSCs), with their dual ability for self-renewal and multilineage differentiation, constitute an essential component of hematopoietic transplantations. Human fetal liver (FL) represents a promising alternative HSC source, and we previously reported simple culture conditions allowing long-term expansion of FL hematopoietic progenitors. In the present study, we used the nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse xenotransplantation assay to confirm that human FL is rich in NOD/SCID-repopulating cells (SRCs) and to show that these culture conditions repeatedly maintained short- and long-term SRCs from various FL samples for at least 28 days. Quantitative limited dilution analysis in NOD/SCID mice demonstrated for the first time that a 10- to over a 100-fold net expansion of FL SRCs could be achieved after 28 days of culture. The efficiency of this culture system may lead to an increase in the use of FL as a source of HSCs for transplantation in adult patients, as previously demonstrated with umbilical cord blood under different culture conditions.


Subject(s)
Fetus/cytology , Hematopoietic Stem Cells/cytology , Liver/cytology , Stem Cell Transplantation/methods , Adult , Animals , Cell Division , Cells, Cultured , Humans , In Vitro Techniques , Mice , Mice, Inbred NOD , Mice, SCID , Transplantation, Heterologous
7.
Br J Haematol ; 119(3): 792-802, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12437662

ABSTRACT

Successful expansion of haematopoietic cells in ex vivo cultures will have important applications in transplantation, gene therapy, immunotherapy and potentially also in the production of non-haematopoietic cell types. Haematopoietic stem cells (HSC), with their capacity to both self-renew and differentiate into all blood lineages, represent the ideal target for expansion protocols. However, human HSC are rare, poorly characterized phenotypically and genotypically, and difficult to test functionally. Defining optimal culture parameters for ex vivo expansion has been a major challenge. We devised a simple and reproducible stroma-free liquid culture system enabling long-term expansion of putative haematopoietic progenitors contained within frozen human fetal liver (FL) crude cell suspensions. Starting from a small number of total nucleated cells, a massive haematopoietic cell expansion, reaching > 1013-fold the input cell number after approximately 300 d of culture, was consistently achieved. Cells with a primitive phenotype were present throughout the culture and also underwent a continuous expansion. Moreover, the capacity for multilineage lymphomyeloid differentiation, as well as the recloning capacity of primitive myeloid progenitors, was maintained in culture. With its better proliferative potential as compared with adult sources, FL represents a promising alternative source of HSC and the culture system described here should be useful for clinical applications.


Subject(s)
Hematopoietic Stem Cells/cytology , Liver/cytology , Antigens, CD34 , Cell Culture Techniques , Cell Differentiation , Cell Division , Cell Lineage , Colony-Forming Units Assay/methods , Cytokines/pharmacology , Humans , Liver/embryology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...